www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Statistik (Anwendungen)" - Schätzer
Schätzer < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schätzer: Maximum-Likelihood-Schätzer
Status: (Frage) beantwortet Status 
Datum: 17:18 Di 01.01.2008
Autor: jumape

Aufgabe
Seien [mm] (X_i)_{i\in\IN} [/mm] unabhängig und Poissonverteilt [mm] P_\lambda. [/mm] Bestimmen Sie den Maximum-Likelihood-schätzer für [mm] \lambda. [/mm]

Also wenn ich Maximum-Likelihood jetzt richtig verstanden habe muss ich den ln auf die Funktion schicken, sie dann nach [mm] \lambda [/mm] ableiten und 0 setzen.
Ich habe allerdings ein Problem damit, dass das Produkt nicht endlich ist.
Mein Ansatz wäre:
F(k)= [mm] e^{-\lambda} \bruch {\lambda^k}{k!} [/mm]
nun wende ich den ln darauf an und erhalte:
[mm] -\lambda+k ln\lambda [/mm] - ln(k!)
dies leite ich nach [mm] \lambda [/mm] ab und erhalte:
[mm] -1+k\bruch{1}{\lambda} [/mm]
Wenn ich dies 0 setze bekomme ich für [mm] \lambda: [/mm]
[mm] \lambda=k [/mm]

Es wäre nett wenn das mal jemand kommentieren könnte.

        
Bezug
Schätzer: Antwort
Status: (Antwort) fertig Status 
Datum: 18:45 Di 01.01.2008
Autor: Blech


> Seien [mm](X_i)_{i\in\IN}[/mm] unabhängig und Poissonverteilt
> [mm]P_\lambda.[/mm] Bestimmen Sie den Maximum-Likelihood-schätzer
> für [mm]\lambda.[/mm]
>  Also wenn ich Maximum-Likelihood jetzt richtig verstanden
> habe muss ich den ln auf die Funktion schicken, sie dann
> nach [mm]\lambda[/mm] ableiten und 0 setzen.

Nein!

Das ist nur etwas Mechanik, mit der man oft weiterkommt. ML heißt, Du nimmst als Schätzer für den gesuchten Parameter den Wert, für den die Wahrscheinlichkeit, daß Du Deine gegebene Stichprobe ziehst, am größten ist.

Und das machen wir jetzt:

Wenn wir n unabhängige [mm] $P_\lambda$ [/mm] verteilte ZV [mm] X_i [/mm] haben, dann ist die Wahrscheinlichkeit, für ein bestimmtes Ergebnis [mm] $(k_1,\dots,k_n)\in\IN_0$: [/mm]

[mm] $P_\lambda ((X_1,\dots,X_n)=(k_1,\dots,k_n))=\produkt_{i=1}^{n}P_\lambda (X_i=k_i)$, [/mm] da die ZV unabhängig sind.

Damit haben wir:
[mm] $P_\lambda((X_1,\dots,X_n)=(k_1,\dots,k_n))=\produkt_{i=1}^{n} e^{-\lambda}\frac{\lambda^{k_i}}{k_i!}=e^{-n\lambda} \lambda^{n\overline{k}}\produkt_{i=1}^{n} \frac{1}{k_i!}$ [/mm]
wobei [mm] $\overline{k}$ [/mm] das arithmetische Mittel der [mm] $k_i$ [/mm] ist.


Jetzt ziehen wir eine Stichprobe, [mm] $h_1,\dots,h_n$, [/mm] für die wir den MLE bestimmen wollen.
D.h. wir suchen das [mm] $\lambda$, [/mm] für das [mm] $P_\lambda((X_1,\dots,X_n)=(h_1,\dots,h_n))$ [/mm] maximal wird.

Da das eine Funktion von [mm] $\lambda$ [/mm] ist und die [mm] $h_i$ [/mm] die Parameter sind, ändern wir die Notation. Wir haben die Likelihood-Funktion
[mm] $L(h_1,\dots,h_n;\lambda)=e^{-n\lambda} \lambda^{n\overline{h}}\produkt_{i=1}^{n} \frac{1}{h_i!}$ [/mm]
und suchen das Maximum in Abhängigkeit von [mm] $\lambda$. [/mm]

Dafür können wir den Logarithmus nehmen (macht hier kaum einen Unterschied):
[mm] $l(h_1,\dots,h_n;\lambda)=-n\lambda+n\overline{h}\ln\lambda [/mm] + [mm] \ln\left(\produkt_{i=1}^{n} \frac{1}{h_i!}\right)$ [/mm]

Ableiten und gleich 0 setzen:
[mm] $\frac{d\ l}{d\lambda}=-n+\frac{n\overline{h}}{\lambda}=0$ [/mm]
[mm] $\Rightarrow \lambda=\overline{h}$ [/mm]

Die zweite Ableitung ist kleiner 0, d.h. es ist ein Maximum.

Damit ist der MLE für die Intensität einer Poissonverteilung einfach das Stichprobenmittel

> [snip]
> Es wäre nett wenn das mal jemand kommentieren könnte.

Handwerklich machst Du das meiste richtig. Aber weil Du nur die Mechanik kennst, beginnst Du mit der falschen Funktion und kannst das Ergebnis nicht interpretieren. =)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]