Schätzen < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:11 Mi 16.03.2011 | Autor: | Pille456 |
Aufgabe | Ein Meinungsforschungsinstitut möchte den Prozentsatz p der Wahlberechtigten ermitteln,
die bei der nächsten Wahl Partei X wählen. Dafür werden n Wahlberechtigte befragt,
und der Prozentsatz der Wähler von Partei X in der Stichprobe wird als Schätzung für p
genommen. Wie groß muss n gewählt werden, um p auf 0.5% (1%) Genauigkeit mit 99%
(95%) Sicherheit zu schätzen? |
Hi!
Also zum Schätzen fiel mir folgender Satz ein:
"Der erforderliche Stichprobenumfang bei einem Bernoulli-Experiment mit unbekannter Erfolgswahrscheinlichkeit p, sodass [mm] P_p(-\varepsilon\le p'-p\le\varepsilon)\ge \alpha [/mm] ist gegeben durch
[mm] n=\bruch{c^2}{4*\varepsilon} [/mm] wobei c die Lösung von [mm] \Phi(c)=\bruch{\alpha+1}{2} [/mm] ist" (p' ist die geschätzte Wahrscheinlichkeit und p die tatsächliche)
In diesem Fall ist dann [mm] \varepsilon=0.0005(0.0001) [/mm] und [mm] \alpha=0.01(0.05) [/mm] wenn ich das richtig verstehe.
[mm] \Phi(c) [/mm] ist soweit ich weiß die Normalverteilung.
Nun wird im Skript immer auf eine "Tabelle der Normalverteilungen" verwiesen. Muss ich immer in diese Tabelle schauen bzw. die allgemein Formel der Normalverteilung umformen, um so eine Aufgabe zu lösen oder geht das auch einfacher?
Gruß
Pille
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:49 Mi 16.03.2011 | Autor: | luis52 |
Moin
> wobei c die Lösung von
> [mm]\Phi(c)=\bruch{\alpha+1}{2}[/mm] ist" (p' ist die geschätzte
> Wahrscheinlichkeit und p die tatsächliche)
>
> Nun wird im Skript immer auf eine "Tabelle der
> Normalverteilungen" verwiesen. Muss ich immer in diese
> Tabelle schauen bzw. die allgemein Formel der
> Normalverteilung umformen, um so eine Aufgabe zu lösen
> oder geht das auch einfacher?
Ja, es folgt naemlich
[mm] $c=\Phi^{-1}\left(\frac{\alpha+1}{2} \right)$.
[/mm]
D.h. $c_$ ist ein Prozentpunkt der Normalverteilung, die in jedem vernuenftigen Skript tabelliert sind.
vg Luis
|
|
|
|