www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Satz von Schwarz
Satz von Schwarz < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Satz von Schwarz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:23 Fr 26.05.2006
Autor: Kalita

Aufgabe
Es sei [mm] f:/R^2 [/mm] nach /R definiert durch f (x;y):= [mm] xy^3/ x^2+y^2 [/mm] falls (x;y) ungleich (0;0) und 0 falls (x;y)= (0;0)
Es gilt D1D2f(0;0) ist ungleich D2D1f(0;0)
Ich habe die Aufgabe in keinem anderen Forum gestellt

Ist die partielle Ableitung von 0 nicht0? Warum sollen die beiden Terme dann unterschiedlich sein?Also D1f=0, D2f=0?

        
Bezug
Satz von Schwarz: Antwort
Status: (Antwort) fertig Status 
Datum: 02:00 Fr 26.05.2006
Autor: andreas

hi

die terme können sich durchaus unterscheiden, da du zuerst ableiten musst und danach erst einsetzen!

grüße
andreas

Bezug
                
Bezug
Satz von Schwarz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 08:33 Fr 26.05.2006
Autor: Kalita

Aber das habe ichg schon getan und habe festgestellt, das das das gleiche ist. Aber geht das? Wenn die Funktion unstetig ist, gilt nicht das D1D2=D2D!DAs wäre dann mein Lösungsvorschlag, aber die Frage ist, ob dieser Satz stark ist in seiner Argumentation.

Bezug
                        
Bezug
Satz von Schwarz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:10 Sa 27.05.2006
Autor: andreas

du musst dabei schon den differezenqutienten bilden und die differenz gegen null gehen lassen (einmal zuerst in $x$ dann in $y$ richtung und einmal umgekehrt), denn die funktion ist nur im nullpunkt als $0$ definiert, nicht in einer kleinen umgebung! und daraus, dass der funktionswert in einem punkt null ist folgt nicht, dass die zweite ableitung null ist, betrachte z.b. $f(x) = [mm] x^2$ [/mm] für $x = 0$!

grüße
andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]