www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Satz von Green
Satz von Green < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Satz von Green: Ansatz richtig?
Status: (Frage) beantwortet Status 
Datum: 16:49 So 22.05.2011
Autor: Kato

Aufgabe
Sei [mm] \vec F = (x^2 + y, xy) [/mm] ein Kraftfeld in [mm] \IR^2 [/mm] und [mm] \Gamma : [0,2\pi] \to \IR^2 [/mm] die Funktion [mm] \Gamma (t) = (1+cos\, t,sin\, t)[/mm]. Berechne die Arbeit des Kraftfelds [mm]\vec F[/mm] die Kurve [mm] \Gamma [/mm] entlang.


Hallo liebe Mathefreunde

zur Lösung der gegebenen Aufgabe habe ich mir folgendes überlegt:

Sei B die durch [mm] \Gamma [/mm] (t) (0 [mm] \le [/mm] t [mm] \le 2\pi) [/mm] begrenzte Fläche. (Die Einheitskreisscheibe um 1 nach rechts verschoben).

[mm] \integral_{\Gamma}{\vec F d\Gamma} = \integral_{\Gamma}{(x^2+y\,dx + xy\,dy)} = \integral_{B}{(y - 2x)} dx\, dy [/mm] (Satz von Green)
Ist das soweit richtig?
Ich würde jetzt weitermachen, indem ich die Kreisfläche zerlege [mm]( y = \pm\wurzel{1-(x-1)^2} )[/mm]. Also [mm] \integral_{0}^{2}{\integral_{0}}^{\wurzel{1-(x-1)^2}}{y - 2x\; dy} dx} + \left| \integral_{0}^{2}{\integral_{-\wurzel{1-(x-1)^2}}^{0}{y - 2x\;dy} dx} \right| [/mm]

Ich habe das Gefühl, dass das nicht richtig ist und bevor ich jetzt an dieser Aufgabe weitermache, wäre ich sehr dankbar, wenn einer von euch sich diese kurz anschaut.

Liebe Grüße

Kato

        
Bezug
Satz von Green: Antwort
Status: (Antwort) fertig Status 
Datum: 17:28 So 22.05.2011
Autor: rainerS

Hallo Kato!

> Sei [mm]\vec F = (x^2 + y, xy)[/mm] ein Kraftfeld in [mm]\IR^2[/mm] und
> [mm]\Gamma : [0,2\pi] \to \IR^2[/mm] die Funktion [mm]\Gamma (t) = (1+cos\, t,sin\, t)[/mm].
> Berechne die Arbeit des Kraftfelds [mm]\vec F[/mm] die Kurve [mm]\Gamma[/mm]
> entlang.
>  
> Hallo liebe Mathefreunde
>  
> zur Lösung der gegebenen Aufgabe habe ich mir folgendes
> überlegt:
>  
> Sei B die durch [mm]\Gamma (t) (0 \le t \le 2\pi)[/mm] begrenzte Fläche. (Die Einheitskreisscheibe um 1 nach rechts
> verschoben).
>  
> [mm]\integral_{\Gamma}{\vec F d\Gamma} = \integral_{\Gamma}{(x^2+y\,dx + xy\,dy)} = \integral_{B}{(y - 2x)} dx\, dy[/mm]
> (Satz von Green)
> Ist das soweit richtig?

Nicht ganz: die Ableitung von [mm] $x^2+y$ [/mm] nach y ist 1, also steht da rechts

  [mm] \integral_{B}{(y -1)} dx\, dy[/mm]

Allerdings funktioniert es genauso gut, das Kurvenintegral direkt auszurechnen, also über

[mm] \integral_{0}^{2\pi} F(\Gamma(t))*\Gamma'(t) dt [/mm] .

>  Ich würde jetzt weitermachen, indem ich die Kreisfläche
> zerlege [mm]( y = \pm\wurzel{1-(x-1)^2} )[/mm]. Also
> [mm]\integral_{0}^{2}{\integral_{0}}^{\wurzel{1-(x-1)^2}}{y - 2x\; dy} dx} + \left| \integral_{0}^{2}{\integral_{-\wurzel{1-(x-1)^2}}^{0}{y - 2x\;dy} dx} \right|[/mm]

Das geht zwar, ist aber ein bischen mühsam. Einfacher ist es, in Polarkoordinaten

[mm] x= 1+r\cos\phi [/mm], [mm] y=r\sin\phi[/mm]

zu transformieren.

  Viele Grüße
    Rainer


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]