Satz von Fubini < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Es sei f: [mm] [0,M]x[0,\infty) \to \IR [/mm] gegeben durch [mm] f(x,t)=sin(x)e^{-xt}, [/mm] wobei M > 0
c) Zeigen Sie, dass [mm] \integral_{0}^{M}{\integral_{0}^{\infty}{f(x,t) dx}\ dt}=\integral_{0}^{M}{\bruch{sin(x)}{x} dx}
[/mm]
d) Zeigen Sie mithilfe des Satzes von Fubini, dass [mm] \integral_{0}^{\infty}{\bruch{sin(x)}{x} dx} [/mm] existiert und gleich [mm] \pi/2 [/mm] ist. |
Hallo zusammen,
Aufgabe c) hab ich gelöst, das war nicht schwer. Ich hab sie nur hingeschrieben, weil ich dachte, dass sie für d) von Bedeutung sein könnte.
Meine Frage lautet:
Mir ist klar, dass [mm] \integral_{0}^{\infty}{\bruch{sin(x)}{x} dx}=\pi/2, [/mm] aber was soll der Satz von Fubini da?
Vielen Dank im Vorraus!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:22 Fr 11.12.2009 | Autor: | fred97 |
> Es sei f: [mm][0,M]x[0,\infty) \to \IR[/mm] gegeben durch
> [mm]f(x,t)=sin(x)e^{-xt},[/mm] wobei M > 0
> c) Zeigen Sie, dass
> [mm]\integral_{0}^{M}{\integral_{0}^{\infty}{f(x,t) dx}\ dt}=\integral_{0}^{M}{\bruch{sin(x)}{x} dx}[/mm]
>
> d) Zeigen Sie mithilfe des Satzes von Fubini, dass
> [mm]\integral_{0}^{\infty}{\bruch{sin(x)}{x} dx}[/mm] existiert und
> gleich [mm]\pi/2[/mm] ist.
> Hallo zusammen,
> Aufgabe c) hab ich gelöst, das war nicht schwer. Ich hab
> sie nur hingeschrieben, weil ich dachte, dass sie für d)
> von Bedeutung sein könnte.
> Meine Frage lautet:
> Mir ist klar, dass
> [mm]\integral_{0}^{\infty}{\bruch{sin(x)}{x} dx}=\pi/2,[/mm] aber
> was soll der Satz von Fubini da?
Einfach mal probieren:
Du hast: $ [mm] \integral_{0}^{M}{\integral_{0}^{\infty}{f(x,t) dx}\ dt}=\integral_{0}^{M}{\bruch{sin(x)}{x} dx} [/mm] $
Nach Fubini: [mm] $\integral_{0}^{M}{\bruch{sin(x)}{x} dx} [/mm] = [mm] \integral_{0}^{\infty}{\integral_{0}^{M}{f(x,t) dt}\ dx}$
[/mm]
Das rechte Integral berechnen und dann $M [mm] \to \infty$
[/mm]
FRED
> Vielen Dank im Vorraus!
|
|
|
|
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 09:54 Fr 11.12.2009 | Autor: | derdickeduke |
Danke schonmal für deine schnelle Antwort Fred!
Da komme ich nur leider auch nicht hin, oder ich hab mich verrechnet, das kann man ja nie ausschließen.
[mm] \limes_{M\rightarrow\infty}\integral_{0}^{M}{\bruch{sin(x)}{x}}dx=
[/mm]
[mm] \limes_{M\rightarrow\infty}\integral_{0}^{M}{\integral_{0}^{\infty}{sin(x)e^{-xt}dt}dx}\overbrace{=}^{Fubini}\limes_{M\rightarrow\infty}\integral_{0}^{\infty}{\integral_{0}^{M}{sin(x)e^{-xt}dt}dx}=
[/mm]
[mm] \limes_{M\rightarrow\infty}\integral_{0}^{\infty}{-\bruch{sin(x)}{e^{Mt}}-\bruch{cos(M)}{e^{Mt}t^2}+\bruch{1}{t^2}dt}=
[/mm]
[mm] \limes_{M\rightarrow\infty}\integral_{0}^{\infty}{-\bruch{sin(x)}{e^{Mt}}}-\integral_{0}^{\infty}{\bruch{cos(M)}{e^{Mt}t^2}}+\integral_{0}^{\infty}{\bruch{1}{t^2}dt}=
[/mm]
Und ab dann wird's unberechenbar, denn z.B. [mm] \limes_{M\rightarrow\infty}sin(M) [/mm] ist doch völlig uninterpretierbar.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:01 Sa 12.12.2009 | Autor: | Disap |
Du hast geschrieben
$ [mm] \limes_{M\rightarrow\infty}\integral_{0}^{M}{\integral_{0}^{\infty}{sin(x)e^{-xt}dt}dx}\overbrace{=}^{Fubini}\limes_{M\rightarrow\infty}\integral_{0}^{\infty}{\integral_{0}^{M}{sin(x)e^{-xt}dt}dx}= [/mm] $
Und nun anders geschrieben
[mm] \limes_{M\rightarrow\infty}\integral_{0}^{\infty}sin(x){\integral_{0}^{M}{e^{-xt}dt}dx}
[/mm]
Was ist die Stammfunktion von [mm] e^{-xt} [/mm] nach t integriert? Eine Mögliche ist
[mm] $-e^{- t*x} [/mm] /x$
da steht [mm] sin(\red{x}), [/mm] integrieren wirst du aber erst einmal nach t.
PS: Ich bin davon ausgegangen, dass weil im Ursprungsthread stand
$ [mm] \integral_{0}^{M}{\integral_{0}^{\infty}{f(x,t) dx}\ dt}$,
[/mm]
dass du jetzt zuerst nach t integrierst und nicht nach x.
|
|
|
|