www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebraische Geometrie" - Satz von Bertini
Satz von Bertini < Algebraische Geometrie < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebraische Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Satz von Bertini: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:43 Do 04.08.2011
Autor: fuchs1985

Aufgabe
In einem linearen System sind seine allgemeinen Elemente glatt bis auf den Basisort des Systems.

Hallo alle miteinander,

ich bearbeite gerade für mich selbst den Beweis des Satzes von Bertini aus dem Buch von Griffiths & Harris "Principles of algebraic geometry" durch. Aber leider gibt es im Beweis ein paar Stellen die ich nicht so ganz verstehe:
1. Was meint er bei der Notation des Divisors [mm] D_{\lambda} [/mm] = [mm] (f(z_{1}, \dots, z_{n}) [/mm] + [mm] \lambda \cdot g(z_{1}, \dots, z_{n})) [/mm] = 0) den Ausdruck [mm] f(z_{1}, \dots, z_{n}) [/mm] + [mm] \lambda \cdot g(z_{1}, \dots, z_{n})) [/mm] = 0? Sonst hat er bei der Einführung von den Divisoren bzgl. Funktionen evtl. mal D = (f) gesetzt, aber das man das f als Gleichung im Sinne eines Divisors auffassen kann, verstehe ich nicht. Mir ist natürlich klar, dass ich holomorphe Funktionen brauche, wenn das lineare System sich in einer Polyscheibe [mm] \triangle [/mm] einer kompakt komplexen Mannigfaltigkeit X befindet. Aber wie kommt er denn dann drauf, dass die Divisoren gerade so aussehen müssen bzw. was will er damit ausdrücken? Oder werden damit irgenwie Hyperflächen dargestellt?
2. Die 2. Frage ist eigentlich mehr eine Bestätigung von euer Seite (, falls ich den Beweis richtig verstanden habe). Dieser Beweis ist ja ein Widerspruchsbeweis und wenn nun die Darstellung [mm] f(P_{\lambda}) [/mm] + [mm] \lambda \cdot g(P_{\lambda}) [/mm] = 0 für einen singulären Punkt [mm] P_{\lambda} [/mm] des Divisors [mm] D_{\lambda} [/mm] gilt, der nicht im Basisort liegt, dann findet man den widerspruch bzgl. der oben genannten gleichung darin, dass der Bruch f/g (lokale meromorphe Funktion) schon eine konstante darstellt auf der Menge der singulären Punkte ohne die Menge der Basispunkte und somit die obige gleichung nie erfüllen könnte. Ist das richtig?

Vielen Dank im Voraus für eure Hilfe!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Satz von Bertini: Antwort
Status: (Antwort) fertig Status 
Datum: 20:01 Fr 05.08.2011
Autor: felixf

Moin,

> In einem linearen System sind seine allgemeinen Elemente
> glatt bis auf den Basisort des Systems.
>  
> ich bearbeite gerade für mich selbst den Beweis des Satzes
> von Bertini aus dem Buch von Griffiths & Harris "Principles
> of algebraic geometry" durch. Aber leider gibt es im Beweis

den Beweis kenne ich nicht, deswegen kann ich nicht wirklich antworten. Aber zum ersten Teil der ersten Frage:

> ein paar Stellen die ich nicht so ganz verstehe:
>  1. Was meint er bei der Notation des Divisors [mm]D_{\lambda}[/mm]
> = [mm](f(z_{1}, \dots, z_{n})[/mm] + [mm]\lambda \cdot g(z_{1}, \dots, z_{n}))[/mm]
> = 0) den Ausdruck [mm]f(z_{1}, \dots, z_{n})[/mm] + [mm]\lambda \cdot g(z_{1}, \dots, z_{n}))[/mm]
> = 0? Sonst hat er bei der Einführung von den Divisoren
> bzgl. Funktionen evtl. mal D = (f) gesetzt, aber das man
> das f als Gleichung im Sinne eines Divisors auffassen kann,
> verstehe ich nicht.

Vielleicht ist hier der Nullstellendivisor der Funktion $f + [mm] \lambda [/mm] g$ gemeint? Also der "Teildivisor" von $(f + [mm] \lambda [/mm] g)$, der nur positive Koeffizienten umfasst?

LG Felix


Bezug
        
Bezug
Satz von Bertini: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:23 Di 09.08.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebraische Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]