www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Satz vom regulären Wert
Satz vom regulären Wert < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Satz vom regulären Wert: Umkehrung möglich?
Status: (Frage) beantwortet Status 
Datum: 13:55 So 25.07.2010
Autor: karlhungus

Aufgabe
Man widerlege oder beweise folgende „Umkehrung“ des Satzes vom „regulären Wert“ :
Sei U Teilmenge des [mm] \IR^{n} [/mm] offen, f : U [mm] \to \IR^{n-k} [/mm] eine C1-Abbildung und M die Nullstellenmenge von f, M: = {x [mm] \in [/mm] U : f(x) = 0}. Gilt die Abschätzung Rang(Df(x)) < n − k für mindestens ein x [mm] \in [/mm] M, so ist M keine C1-Untermannigfaltigkeit.  

hallo zusammen,

ich bereite mich gerade auf das thema untermannigfaltigkeiten im rahmen von ana2 vor und hab obige aufgabe im netz gefunden.
ich bin mir nicht ganz sicher, aber ich würde sagen die angebotene "negation" ist korrekt bis auf den fall von einzelnen Punkten als 0-dim. UMFkeiten. oder vergesse ich da etwas?
ich weiß, ist jetzt keine mathematische argumentation dabei, aber wenn einer einfach ja oder nein sagen könnte...?

vielen dank,
hannes

        
Bezug
Satz vom regulären Wert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:27 So 25.07.2010
Autor: schachuzipus

Hallo karlhungus,

was sprach dagegen, die 3 Zeilen Aufgabenstellung abzutippen??

Mensch, Mensch ...

Gruß

schachuzipus

Bezug
        
Bezug
Satz vom regulären Wert: Antwort
Status: (Antwort) fertig Status 
Datum: 10:30 Mo 26.07.2010
Autor: felixf

Moin!

> Man widerlege oder beweise folgende „Umkehrung“ des
> Satzes vom „regulären Wert“ :
>  Sei U Teilmenge des [mm]\IR^{n}[/mm] offen, f : U [mm]\to \IR^{n-k}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


> eine C1-Abbildung und M die Nullstellenmenge von f, M: = {x
> [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

U : f(x) = 0}. Gilt die Abschätzung Rang(Df(x)) < n

> − k für mindestens ein x [mm]\in[/mm] M, so ist M keine
> C1-Untermannigfaltigkeit.
>  
> ich bereite mich gerade auf das thema
> untermannigfaltigkeiten im rahmen von ana2 vor und hab
> obige aufgabe im netz gefunden.
>  ich bin mir nicht ganz sicher, aber ich würde sagen die
> angebotene "negation" ist korrekt bis auf den fall von
> einzelnen Punkten als 0-dim. UMFkeiten. oder vergesse ich
> da etwas?

Du vergisst das was. Nimm doch mal ein ganz einfaches $M$, z.B. $M = [mm] \{ (0, y) \in \IR^2 \mid y \in \IR \}$, [/mm] das ist garantiert eine [mm] $C^1$-Mannigfaltigkeit. [/mm]

Jetzt gibt ein $f : [mm] \IR^2 \to \IR$ [/mm] an mit $M = [mm] f^{-1}(0)$. [/mm] Bzw. suche mehrere. Kannst du eins finden, welches 0 nicht als regulaeren Wert hat?

LG Felix


Bezug
                
Bezug
Satz vom regulären Wert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:36 Mo 26.07.2010
Autor: karlhungus

moin,

> Jetzt gibt ein $ f : [mm] \IR^2 \to \IR [/mm] $ an mit $ M = [mm] f^{-1}(0) [/mm] $. Bzw. suche
> mehrere.
> Kannst du eins finden, welches 0 nicht als
> regulaeren Wert hat?

hab gerade mal ein bisschen rumprobiert:
f(x,y)=x² erfüllt [mm] f^{-1}(0)=M, [/mm] aber [mm] Df(x,y)(v_{1},v_{2})=2xv_{1} [/mm] ist für x=0 nicht surjektiv, also ist 0 kein regulärer Wert, also ist der obige Satz nicht gültig, richtig?

auf jeden fall danke schön fürs antworten,
gruß,
hannes

Bezug
                        
Bezug
Satz vom regulären Wert: Antwort
Status: (Antwort) fertig Status 
Datum: 14:58 Mo 26.07.2010
Autor: felixf

Moin Hannes,

> > Jetzt gibt ein [mm]f : \IR^2 \to \IR[/mm] an mit [mm]M = f^{-1}(0) [/mm].
> Bzw. suche
> > mehrere.
>  > Kannst du eins finden, welches 0 nicht als

> > regulaeren Wert hat?
>  
> hab gerade mal ein bisschen rumprobiert:
> f(x,y)=x² erfüllt [mm]f^{-1}(0)=M,[/mm] aber
> [mm]Df(x,y)(v_{1},v_{2})=2xv_{1}[/mm] ist für x=0 nicht surjektiv,
> also ist 0 kein regulärer Wert, also ist der obige Satz
> nicht gültig, richtig?

genau. Das war auch das Beispiel was ich im Kopf hatte ;)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]