Satz über implizite Funktion < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Beweisen Sie, dass durch die Gleichung
ln(x + y +g(x,y) [mm] -2)e^{x+y} [/mm] - 2x +y +g(x,y) = 0 und g(1,1)
eine Funktion zweier Variabler g(x,y) erklärt wird die in einer Umgebung von (1,1) [mm] \in \IR^{2} [/mm] definiert und dort glatt ist. Berechnen Sie die Partiellen Ableitungen dieser Funktion g(x,y) an der Stelle (1,1) |
Guten Morgen miteinander diese Aufgabe bereitet mir Kopfzerbrechen
Ich weiss dass ich hierfür den Satz über implizite Funktionen verwenden aber wie weiss ich wirklich nicht alleine die Schreibweise der Funktion fällt mir schwer zu verstehen
Ich soll zuerst zeigen dass die Funktion eine Fkt. zweier Variablen in einer Umgebung (1,1) definiert und dort glatt ist also stetig und unendlich oft diffbar ist.
Wie gehe ich in einem solchen Fall vor?
lg eddie
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:13 Do 19.01.2012 | Autor: | fred97 |
> Beweisen Sie, dass durch die Gleichung
> ln(x + y +g(x,y) [mm]-2)e^{x+y}[/mm] - 2x +y +g(x,y) = 0 und
> g(1,1)
Ich habe meine Zweifel, dass Du die Aufgabe richtig abgeschreiben hast. Vor allem fehlt , welchen Wert g in (1,1) annehmen soll.
Kläre dies.
FRED
> eine Funktion zweier Variabler g(x,y) erklärt wird die in
> einer Umgebung von (1,1) [mm]\in \IR^{2}[/mm] definiert und dort
> glatt ist. Berechnen Sie die Partiellen Ableitungen dieser
> Funktion g(x,y) an der Stelle (1,1)
> Guten Morgen miteinander diese Aufgabe bereitet mir
> Kopfzerbrechen
> Ich weiss dass ich hierfür den Satz über implizite
> Funktionen verwenden aber wie weiss ich wirklich nicht
> alleine die Schreibweise der Funktion fällt mir schwer zu
> verstehen
>
> Ich soll zuerst zeigen dass die Funktion eine Fkt. zweier
> Variablen in einer Umgebung (1,1) definiert und dort glatt
> ist also stetig und unendlich oft diffbar ist.
>
> Wie gehe ich in einem solchen Fall vor?
>
> lg eddie
|
|
|
|