www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Sattelpunkt Polynom 3. Grades
Sattelpunkt Polynom 3. Grades < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sattelpunkt Polynom 3. Grades: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:27 Do 11.08.2011
Autor: hackintosh

Aufgabe
f(x) = [mm] x^3+6x^2-3ax+1 [/mm]
Bestimmen Sie jeweils einen Wert von a so, dass der Graph
a) einen Sattelpunkt hat
b) zwei lokale Extrema
c) einen Wendepunkt mit positiver Steigung der Wendetangente hat

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Sehe ich das richtig, dass a) zu keiner Lösung führen kann?
Ich kann, ohne a zu bestimmen, trotzdem eine Ableitung herführen, da in der 1. Ableitung a schon wegfallen würde. siehe:
f(x)' = [mm] 3x^2+12x-3 [/mm]
f(x)'' = 6x+12
f(x)''' = 6

Die 3. Ableitung passt, da ungleich 0.
Die zweite Ableitung lässt sich mit x=-2 nach 0 auflösen.
Die dritte jedoch nicht mit x=-2.
Daher gibt es keinen Sattelpunkt.
Ist das so korrekt? Weiterhin würde mir auch kein anderer Weg einfallen...

        
Bezug
Sattelpunkt Polynom 3. Grades: Antwort
Status: (Antwort) fertig Status 
Datum: 00:14 Fr 12.08.2011
Autor: Adamantin


> f(x) = [mm]x^3+6x^2-3ax+1[/mm]
>   Bestimmen Sie jeweils einen Wert von a so, dass der
> Graph
>  a) einen Sattelpunkt hat
>  b) zwei lokale Extrema
>  c) einen Wendepunkt mit positiver Steigung der
> Wendetangente hat
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Sehe ich das richtig, dass a) zu keiner Lösung führen
> kann?
>  Ich kann, ohne a zu bestimmen, trotzdem eine Ableitung
> herführen, da in der 1. Ableitung a schon wegfallen
> würde. siehe:
>  f(x)' = [mm]3x^2+12x-3[/mm]

Das ist falsch, sofern deine Angabe oben stimmt, denn -3ax wird wohl kaum zu -3, wo ist das a? -3a wäre schon besser und dann hättest du auch ein a in der ersten Ableitung, sonst wäre die ganze Aufgabe nonesens, denn dann wären auch die übrigen beiden Aufgabenteile unabhängig von a oder??

>  f(x)'' = 6x+12
>  f(x)''' = 6
>  
> Die 3. Ableitung passt, da ungleich 0.
>  Die zweite Ableitung lässt sich mit x=-2 nach 0
> auflösen.
>  Die dritte jedoch nicht mit x=-2.
>  Daher gibt es keinen Sattelpunkt.
>  Ist das so korrekt? Weiterhin würde mir auch kein anderer
> Weg einfallen...

Wenn du das a also dann einmal drinnen hast, hast du eine erste Ableitung mit a, die 0 sein muss und eine zweite Ableitung, die kein a nethält und ebenfalls 0 werden muss. Für die zweite Ableitung siehst du sofort, dass x=-2 sein muss, korrekt. Damit findest du dann deinen Wert für a und es existiert ein entsprechender Sattelpunkt


Bezug
                
Bezug
Sattelpunkt Polynom 3. Grades: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:25 Fr 12.08.2011
Autor: hackintosh

Danke für den Tipp!
Bei der b) hab ich nun raus das a=0 ist.
Hier mein Lösungsweg:

[mm] f'(x)=3x^2+12x-3a [/mm]
[mm] 0=3x^2+12x-3a [/mm]
[mm] 3a=3x^2+12x [/mm]
[mm] a=x^2+4x [/mm]

Einsetzen von a
[mm] 0=3x^2+12x-3*(x^2+4x) [/mm]
[mm] 0=3x^2+12x-3x^2+12x [/mm]
0=24x
0=x

Einsetzen von x
[mm] 0=3*0^2+12*0-3a [/mm]
0=0-3a
a=0

Ab hier weiss ich nicht wirklich weiter

Bezug
                        
Bezug
Sattelpunkt Polynom 3. Grades: Antwort
Status: (Antwort) fertig Status 
Datum: 01:45 Fr 12.08.2011
Autor: MathePower

Hallo hackintosh,


[willkommenmr]


> Danke für den Tipp!
>  Bei der b) hab ich nun raus das a=0 ist.
>  Hier mein Lösungsweg:
>  
> [mm]f'(x)=3x^2+12x-3a[/mm]
>  [mm]0=3x^2+12x-3a[/mm]

Diese Gleichung muß zwei verschiedene Lösungen haben.
Dazu untersuchst Du den entstehenden Wurzelausdruck bei
der Auflösung dieser Gleichung nach x.

Daraus kannst Du wiederum Bedingungen an das "a" ableiten,
wann 2 solche Extrema existieren.


>  [mm]3a=3x^2+12x[/mm]
>  [mm]a=x^2+4x[/mm]
>  
> Einsetzen von a
>  [mm]0=3x^2+12x-3*(x^2+4x)[/mm]
>  [mm]0=3x^2+12x-3x^2+12x[/mm]
>  0=24x
>  0=x
>  
> Einsetzen von x
>  [mm]0=3*0^2+12*0-3a[/mm]
>  0=0-3a
>  a=0
>  
> Ab hier weiss ich nicht wirklich weiter


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]