www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Rundungsfehleranalyse
Rundungsfehleranalyse < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rundungsfehleranalyse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:27 So 15.11.2009
Autor: steppenhahn

Aufgabe
Zur Auswertung eines Polynoms der Ordnung k mit

$f(x) = [mm] \sum_{i=0}^{k}a_{i}*x^{i}$ [/mm]

wird gewöhnlich das Horner-Schema verwendet. Hierbei berechnet man im Schritt n:

[mm] $z_{n} [/mm] = [mm] x*z_{n-1} [/mm] + [mm] a_{k-n}$, [/mm]

wobei [mm] $z_{0} [/mm] := [mm] a_{k}$. [/mm] Dann gilt [mm] $z_{k} [/mm] = f(x)$. Zeigen Sie, dass dieser Algorithmus numerisch stabiler ist als das einzelne Auswerten der Summanden von f(x), indem sie eine Rundungsfehleranalyse beider Verfahren durchführen.

Hallo!

Bei der obigen Aufgabe stecke ich fest.

Bei der Rundungsfehleranalyse einer Funktion F berechne ich ja den relativen Fehler: [mm] $\frac{F-rd(F)}{F}$, [/mm] wobei $rd(F)$ das F ist, bei welchem während der Rechnungen immer gerundet wurde.

Ich habe nun mit der Analyse des Horner-Schemas begonnen:

[mm] $rd(z_{n}) [/mm] = [mm] \Big(x*rd(z_{n-1})*(1+\epsilon_{1})+a_{k-n}\Big)*(1+\epsilon_{2}) \overset{1.Naeherung}{=} \Big(x*rd(z_{n-1}) [/mm] + [mm] a_{k-n}\Big) [/mm] + [mm] (\epsilon_{1} [/mm] + [mm] \epsilon_{2})*x*rd(z_{n-1}) [/mm] + [mm] \epsilon_{2}*a_{k-n}$ [/mm]

Außerdem ist im n-ten Schritt die exakte Rechnung an der Stelle:

[mm] $z_{n} [/mm] = [mm] x*rd(z_{n-1}) [/mm] + [mm] a_{n-k}$, [/mm]

So... Nun kann ich den absoluten Fehler berechnen:

[mm] $\Delta z_{n} [/mm] = [mm] z_{n} [/mm] - [mm] rd(z_{n}) [/mm] = [mm] \Big(x*rd(z_{n-1}) [/mm] + [mm] a_{n-k}\Big) [/mm] - [mm] \Bigg(\Big(x*rd(z_{n-1}) [/mm] + [mm] a_{k-n}\Big) [/mm] + [mm] (\epsilon_{1} [/mm] + [mm] \epsilon_{2})*x*rd(z_{n-1}) [/mm] + [mm] \epsilon_{2}*a_{k-n}\Bigg)$ [/mm]

$= [mm] -(\epsilon_{1} [/mm] + [mm] \epsilon_{2})*x*rd(z_{n-1}) [/mm] - [mm] \epsilon_{2}*a_{k-n}$ [/mm]

>>> Das ist jetzt praktisch der absolute Fehler, der während der Rechnung im n-ten Schritt entsteht, oder?

>>> Aber kann ich den absoluten Fehler auch ohne Rekursion darstellen?

Danke für Eure Hilfe,

Stefan


        
Bezug
Rundungsfehleranalyse: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:09 So 15.11.2009
Autor: Al-Chwarizmi


> Zur Auswertung eines Polynoms der Ordnung k mit
>  
>     [mm]f(x) = \sum_{i=0}^{k}a_{i}*x^{i}[/mm]
>  
> wird gewöhnlich das Horner-Schema verwendet. Hierbei
> berechnet man im Schritt n:
>  
>     [mm]z_{n} = x*z_{n-1} + a_{k-n}[/mm]
>  
> wobei [mm]z_{0} := a_{k}[/mm]. Dann gilt [mm]z_{k} = f(x)[/mm]. Zeigen Sie,
> dass dieser Algorithmus numerisch stabiler ist als das
> einzelne Auswerten der Summanden von f(x), indem sie eine
> Rundungsfehleranalyse beider Verfahren durchführen.


Hallo Stefan,

bei der Art von Analyse, wie du sie da durchführst, kenne
ich mich nicht wirklich aus. Aber ich hätte eine kleine
Frage:
Was genau ist denn die alternative Berechnungsweise mit
der "einzelnen Auswertung der Summanden" ? Ich nehme
einmal an, dass dann der i-te Summand [mm] s_i [/mm] so berechnet wird:

       $\ [mm] s_i\ [/mm] =\ [mm] a_i*\underbrace{x*x*.....*x}_{i\ Faktoren}$ [/mm]

Damit kommt man natürlich auf viel mehr Multiplikationen,
was die Güte der Rechnung bestimmt beeinträchtigen wird.
Bei einer Multiplikation addieren sich die relativen Fehler,
so dass also bei der Berechnung des Summanden [mm] s_i [/mm] ein
relativer Fehler

      [mm] \delta(s_i)=\delta(a_i)+i*\delta(x) [/mm]

herauskommt.

LG    Al  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]