www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Rückwärtsanalyse Skalarprodukt
Rückwärtsanalyse Skalarprodukt < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rückwärtsanalyse Skalarprodukt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:32 Fr 23.01.2009
Autor: Rudy

Aufgabe
Führen Sie eine Rückwärtsanalyse für die Berechnung des Skalarproduktes

[mm] (x,y)\mapsto x^{T}y \in \IR [/mm] mit (x,y) [mm] \in \IR^{n}x\IR^{n} [/mm]

durch.

Ich habe leider keine Ahnung, wie ich das machen soll.

Für Hilfe wäre ich sehr dankbar! Ich habe zwar in Büchern, etwa Numerische Mathematik von Deublhard, einen Beweis dafür gefunden, den ich aber nicht verstehe, und der sich über mehrere Lemma hinzieht. GIbts eine klare, stringente Lösung für das Problem?

        
Bezug
Rückwärtsanalyse Skalarprodukt: was ist das ?
Status: (Antwort) fertig Status 
Datum: 17:42 Fr 23.01.2009
Autor: Al-Chwarizmi

Hallo Rudy

Was ist mit einer solchen "Rückwärtsanalyse"
überhaupt gemeint ? Ich finde zwar im Netz
zu diesem Begriff Einträge, aber keine solchen,
die sich einfach auf ein Skalarprodukt beziehen.

LG

Bezug
        
Bezug
Rückwärtsanalyse Skalarprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 18:34 Fr 23.01.2009
Autor: Blech


> Führen Sie eine Rückwärtsanalyse für die Berechnung des
> Skalarproduktes
>  
> [mm](x,y)\mapsto x^{T}y \in \IR[/mm] mit (x,y) [mm]\in \IR^{n}x\IR^{n}[/mm]

Rückwärtsanalyse war, wir suchen für eine fehlerbehaftete Lösung [mm] $\hat z=z+\delta_z$ [/mm] modifizierte Eingangswerte [mm] $\hat x=x+\delta_x$ [/mm] und [mm] $\hat y=y+\delta_y$, [/mm] so daß
[mm] $\hat x^t\hat y=\hat [/mm] z$?


jetzt schreibst Du die Rechnung mal aus, und überlegst Dir dann, wie groß [mm] $\delta_x$ [/mm] und [mm] $\delta_y$ [/mm] mindestens sein müssen. (uns interessiert hier immer nur der best case. Wir wollen ja wissen, wie weit wir von unseren Eingaben mindestens abrücken müßten, damit [mm] $\hat [/mm] z$ eine korrekte Lösung wäre)



> Für Hilfe wäre ich sehr dankbar! Ich habe zwar in Büchern,
> etwa Numerische Mathematik von Deublhard, einen Beweis
> dafür gefunden, den ich aber nicht verstehe, und der sich
> über mehrere Lemma hinzieht. GIbts eine klare, stringente
> Lösung für das Problem?

Du könntest uns auch schreiben, was Du nicht verstehst und dann versuchen, die wahrscheinlich recht allgemeine Beweisführung im Deuflhard für den Spezialfall zu verkürzen.

ciao
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]