www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Signaltheorie" - Rücktransformation s/...
Rücktransformation s/... < Signaltheorie < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Signaltheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rücktransformation s/...: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:26 Do 13.03.2014
Autor: Hing

Aufgabe
[mm] G_{(s)}=\bruch{Cs}{(3/2)RCs+1} [/mm]

Ich möchte gerne die oben genannte Übertragungsfunktion rückttransformieren. Leider weiss ich nicht wie.

Wenn ich den Faltungssatz verwenden möchte, dann muss ich wissen wie s rücktransformiert wird. Bisher habe ich nur in einem Buch gefunden, das es einen Diracimpuls bewirkt. Das sagt mir auch Matlabs ilaplace(). Jedoch wird in den Laplace-Tabellen auch angegeben, das 1 im Bildbereich einen Diracimpuls bewirkt.

Oder bewirkt ein einfaches s eine Ableitung, irgendwie sowas?:

[mm] g_{(t)}=dg_{(t)}/-\bruch{2}{3RC}e^{-2/(3RC)} [/mm]

Wenn im Zähler höhere Polynome stehen würden, dann könnte ich wenigstens eine Partialbruchzerlegung anwenden...

Allgemein könnte ich auch Fragen, wie man eine Übertragungsfunktion rücktransformiert, die im Zähler ein Polynom 1. Ordnung hat?

Fragen über Fragen.

        
Bezug
Rücktransformation s/...: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:29 Fr 14.03.2014
Autor: Hing

Ich habe herausgefunden das es ein [mm] DT_1-Glied [/mm] ist. Es wird sogar hier im Matheraum das Problem angesprochen. Leider verstehe ich die Lösung nicht, da eine Polynomdivision empfohlen wird, da der Zählergrad höher als der Nennergrad sein soll, obwohl [mm] \bruch{s}{s+1}. [/mm]

Bezug
        
Bezug
Rücktransformation s/...: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:31 Fr 14.03.2014
Autor: Hing

Ich habe die Lösung gefunden. Unter anderem hier im Forum. Es war wieder infinit infinit der wusste was Sache ist. [anbet]

Kurz: Es ist die Polynomdivision- auch wenn der Zählergrad gleich dem Nennergrad ist.

Bezug
        
Bezug
Rücktransformation s/...: Weiter rechnen
Status: (Antwort) fertig Status 
Datum: 17:13 Fr 14.03.2014
Autor: Infinit

Hallo Hing,
Du bist schon auf dem richtigen Weg. Eine Parialbruchzerlegung liefert Dir den konstanten Term, da hier Zähler und Nenner gleichen Grad besitzen. Das ergibt rücktransformiert einen entsprechend gewichteten Deltaimpuls.
Dein Ausdruck kann doch geschrieben werden als
[mm]  \bruch{Cs}{\bruch{3}{2}RCs+1} = \bruch{2}{3R} - \bruch{\bruch{2}{3R}}{\bruch{3}{2}RCs+1} [/mm]
Der zweite Term entspricht dann vom Typ her nach einer Multiplikation dem Ausdruck [mm] \bruch{1}{s+a} [/mm], wozu eine abklingende e-Funktion im Zeitbereich gehört.
Viel Spaß beim Ausrechnen,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Signaltheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]