www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Rotationskörper
Rotationskörper < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rotationskörper: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:03 Mi 15.11.2006
Autor: OliTreu

Aufgabe
Gegeben ist die Funktion $ f $ zu $ [mm] f(x)=\wurzel{x^{3}} [/mm] $ im Intervall [0;4].
a) Welches Volumen hat der zugehörige Rotationskörper?
b) Dem Rotationskörper wird ein Zylinder einbeschrieben, dessen Achse die x-Achse ist. Welche Maßzahlen müssen der Radius und die Höhe des Zylinders annehmen, damit das Volumen des Zylinders ein absolutes Maximum hat?

Hi,
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Aufgabe a) habe ich gelöst.
der Integral ist $ [mm] \integral_{0}^{4}\pi(\wurzel{x^{3}})^{2}dx$ [/mm]
und die Lösung ist = 201,06 VE.

Aber bei der Aufgabe b) komme ich einfach nicht darauf, wie ich das maximale Volumen errechnen soll


Danke für Eure Hilfe

Oliver

        
Bezug
Rotationskörper: andere gleiche Aufgaben
Status: (Antwort) fertig Status 
Datum: 21:37 Mi 15.11.2006
Autor: informix

Hallo OliTreu und [willkommenmr],

[guckstduhier] ähnliche Aufgabe und noch eine

oben rechts haben wir ein Such-Feld; damit habe ich die alten Aufgaben gefunden...

> Gegeben ist die Funktion [mm]f[/mm] zu [mm]f(x)=\wurzel{x^{3}}[/mm] im
> Intervall [0;4].
>  a) Welches Volumen hat der zugehörige Rotationskörper?
>  b) Dem Rotationskörper wird ein Zylinder einbeschrieben,
> dessen Achse die x-Achse ist. Welche Maßzahlen müssen der
> Radius und die Höhe des Zylinders annehmen, damit das
> Volumen des Zylinders ein absolutes Maximum hat?
>  Hi,
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Aufgabe a) habe ich gelöst.
> der Integral ist
> [mm]\integral_{0}^{4}\pi(\wurzel{x^{3}})^{2}dx[/mm]
>  und die Lösung ist = 201,06 VE.
>  
> Aber bei der Aufgabe b) komme ich einfach nicht darauf, wie
> ich das maximale Volumen errechnen soll
>  


Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]