www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Ringisomorphie
Ringisomorphie < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ringisomorphie: Beweis
Status: (Frage) beantwortet Status 
Datum: 22:34 So 22.02.2009
Autor: slash

Aufgabe
Beweisen Sie, dass der Ring R isomorph ist zum Ring S aller zweireihigen quadratischen Matrizen [mm] \pmat{ a & -2b \\ b & a } [/mm] mit a, b [mm] \in \IZ. [/mm]

R := {a + [mm] b\wurzel[2]{-2} [/mm] | a, b [mm] \in \IZ [/mm]  }

Keine Ahnung wie.

Hab schon raus, dass die Norm in R gleich der Determinanten in S ist.
Aber ansonsten k.A., wie ich da eine Isomorphie zeigen kann.

Danke, slash.

        
Bezug
Ringisomorphie: Antwort
Status: (Antwort) fertig Status 
Datum: 00:06 Mo 23.02.2009
Autor: pelzig

Die Aufgabe ist doch sehr suggestiv gestellt, der Isomorphismus wird ja sozusagen gleich mitgeliefert: [mm] $$\Phi:R\ni(a+b\sqrt{-2})\mapsto\pmat{a&-2b\\b&a}\in [/mm] S$$ Zeige, dass dies ein Homomorphismus von Ringen ist, der injektiv und surjektiv ist.

Gruß, Robert

Bezug
                
Bezug
Ringisomorphie: Ist klar ...
Status: (Frage) beantwortet Status 
Datum: 06:36 Mo 23.02.2009
Autor: slash

... man macht's ja nicht zum ersten Mal. :)

Aber wie sieht denn Phi konkret aus, um die notwendigen Bedingungen für einen Ringhomomorphismus zu erfüllen?
Wie baue ich die Gleichheit von Norm in R und Determinante in S ein?

Das ist erstmal mein Problem.
Die Bijektivität wird sich daraus dann schon zeigen lassen.
Der Anfang hängt gewissermaßen.

Danke.

Bezug
                        
Bezug
Ringisomorphie: Antwort
Status: (Antwort) fertig Status 
Datum: 07:58 Mo 23.02.2009
Autor: pelzig

Ich hab dir doch ganz konkret hingeschrieben was [mm] $\Phi$ [/mm] macht. Mit Determinante und Norm hat das überhaupt gar nix zu tun! Du musst zeigen, dass [mm] $\Phi$ [/mm] ein Ringhomomorphismus ist, d.h.

1) [mm] $\Phi(a+b)=\Phi(a)+\Phi(b)$ [/mm] und
2) [mm] $\Phi(ab)=\Phi(a)\Phi(b)$ [/mm]

für alle [mm] $a,b\in [/mm] R$. Wenn du das hast, zeige dass [mm] $\Phi$ [/mm] außerdem injektiv und surjektiv ist...

Gruß, Robert

Bezug
                                
Bezug
Ringisomorphie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:07 Mo 23.02.2009
Autor: slash

k ... hab ich.
Injektivität bekomme ich über den Kern des Homomorphismus hin.
Surjektivität hängt.

Danke.


Bezug
                                        
Bezug
Ringisomorphie: Antwort
Status: (Antwort) fertig Status 
Datum: 10:53 Mo 23.02.2009
Autor: fred97


> k ... hab ich.
>  Injektivität bekomme ich über den Kern des Homomorphismus
> hin.
>  Surjektivität hängt.

Komisch !


Sei A =  $ [mm] \pmat{ a & -2b \\ b & a } [/mm] $ aus S gegeben

Setze x = [mm] a+b\wurzel{-2}. [/mm] Dann: x [mm] \in [/mm] R und  [mm] \Phi(x) [/mm] = A


FRED

>  
> Danke.
>  


Bezug
                                                
Bezug
Ringisomorphie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:43 Mo 23.02.2009
Autor: slash

Danke.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]