www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Ringhomomorphismus
Ringhomomorphismus < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ringhomomorphismus: Idee
Status: (Frage) beantwortet Status 
Datum: 10:59 Mo 30.11.2015
Autor: MinLi

Aufgabe
Sei R ein kommutativer Ring und I, J [mm] \subset [/mm] R zwei Ideale.

a) Zeigen Sie die Existenz eines injektiver Ringhomomorphismus
[mm] R/(I\cap [/mm] J) [mm] \to [/mm] R/I x R/J .
(Das Produkt von Ringen ist wieder ein Ring und vermöge komponentenweiser Addition und Multiplikation.)

b) Seien I und J koprim, das heißt I+J=(1). Zeigen Sie die Existenz eines Ringisomorphismus [mm] R/(I\cap [/mm] J) [mm] \cong [/mm] R/I x R/J.

Hallo,

ich soll obige Aufgabe lösen, doch ich habe ein paar Fragen dazu was ich alles zeigen muss.
a) Muss ich hier nur die Existenz oder auch die Eindeutigkeit zeigen? Und zur Existenz: es reicht zu zeigen, dass die obige Abbildung existiert und dass sie ein injektiver Ringhomomorphismus ist.

b) Dass diese Abbildung existiert und dass sie ein Homomorphismus ist habe ich in a) schon bewiesen. Es reicht also zu zeigen, dass es sich um eine Bijektion handelt.

Stimmt das so oder habe ich etwas vergessen was man noch zeigen muss?

LG, MinLi

        
Bezug
Ringhomomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 11:23 Mo 30.11.2015
Autor: UniversellesObjekt

Hallo,

die Eindeutigkeit musst du nicht zeigen. Allerdings meint der Aufgabensteller eigentlich nicht, dass du die Existenz zeigen sollst, sondern die Injektivität eines ganz speziellen "kanonischen" Homomorphismus.

Also wie sieht der injektive Homomorphismus [mm] $R/(I\cap J)\longrightarrow R/I\times [/mm] R/J$ aus? Er sieht so aus, dass man sich einen Homomorphismus [mm] $R\longrightarrow R/I\times [/mm] R/J$ sucht, der den Kern [mm] $I\cap [/mm] J$ hat. Wie sieht der Homomorphismus [mm] $R\longrightarrow R/I\times [/mm] R/J$ aus? Nun, ein Homomorphismus ins direkte Produkt ist bereits vollständig durch seine beiden Komponentenabbildungen gegeben. In diesem Fall sind das natürlich die Projektionen [mm] $R\longrightarrow [/mm] R/I$ und [mm] $R\longrightarrow [/mm] R/J$.

Zusammengefasst: Zeige, dass der Homomorphismus [mm] $R\longrightarrow R/I\times [/mm] R/J$, [mm] $x\longmapsto (\bar{x},\bar{x})$ [/mm] genau den Kern [mm] $I\cap [/mm] J$ hat und verwende den Homomorphiesatz.

b) genau. Genauer gesagt reicht es zu zeigen, dass [mm] $R\longrightarrow R/I\times [/mm] R/J$ surjektiv ist. Der Rest folgt dann wiederum aus dem Homomorphiesatz. Die Surjektivität dieser Abbildung ist übrigens als "Chinesischer Restsatz" bekannt. Ich empfehle dir trotzdem, die Aufgabe selbst zu lösen und nicht nach diesem Stichwort zu googlen.

Liebe Grüße,
UniversellesObjekt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]