www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Ringe - Eigenschaften anwenden
Ringe - Eigenschaften anwenden < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ringe - Eigenschaften anwenden: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 23:06 Mo 27.04.2009
Autor: pathethic

Aufgabe
Sei [mm] (R,\oplus,\odot) [/mm] ein kommutativer Ring mit 1.
Bezeichne 0 das [mm] \oplus [/mm] -neutrale Element in R und -a das jeweils [mm] \oplus [/mm] -inverse Element zu einem a [mm] \in [/mm] R.

Zeigen Sie, dass dann für beliebige a [mm] \in [/mm] R, die Gleichung (-1) [mm] \cdot [/mm] (-a) = a erfüllt ist. Kommentieren Sie dabei, welche Ring-Eigenschaften in den einzelnen Schritten genutzt werden, d.h. (G1) bis (G3) der Gruppe [mm] (R,\oplus), [/mm] (G1) und (G2) des Monoids [mm] (R,\odot), [/mm] Kommutativitöt von [mm] \oplus [/mm] und [mm] \odot [/mm] oder das Distributivgesetzt

Hier bin ich noch nicht sehr weit gekommen, mein erster Gedanke war, dass ja trotzt allem [mm] (\cdot [/mm] 1) das neutrale Element wäre, und im negativen Bereich [mm] (\cdot [/mm] -1), so dass:

(-1) [mm] \cdot [/mm] (-a) = a | (G2)
(-1 [mm] \cdot [/mm] -1) [mm] \cdot [/mm] (-a [mm] \cdot [/mm] a) = a
1 [mm] \cdot [/mm] a = a | (G2)
a = a

Aber das hab ich dann mehr oder minder verworfen, weil das neutrale Element auch bei den negativen Zahlen wohl [mm] (\cdot [/mm] 1) bleibt. Leider fehlt mir ledigliche Idee, hat jemand einen Tipp? :)

        
Bezug
Ringe - Eigenschaften anwenden: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Fr 01.05.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Ringe - Eigenschaften anwenden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:34 Sa 02.05.2009
Autor: zahlenspieler

Hallo pathetic,
>  Hier bin ich noch nicht sehr weit gekommen, mein erster
> Gedanke war, dass ja trotzt allem [mm](\cdot[/mm] 1) das neutrale
> Element wäre, und im negativen Bereich [mm](\cdot[/mm] -1), so

Das ist i. A. falsch; denn dazu müßte [mm]1=-1[/mm] gelten

> dass:
>  
> (-1) [mm]\cdot[/mm] (-a) = a | (G2)

Hoppla, hier würdest Du das voraussetzen, was Du zeigen sollst!

Du könntest z.B. so anfangen: [mm]-1 \odot -a =-1 \odot -a +0 =-1 \odot -a +(1 \odot 0)[/mm]
und dann 0 durch [mm]-a +a[/mm] ersetzen usw.
Hoffe das hilft
zahlenspieler

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]