www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Riemann Summe
Riemann Summe < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Riemann Summe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:00 Di 08.03.2011
Autor: kushkush

Aufgabe
Berechne mit Riemannschen Summen folgende Integrale:


a) [mm] $\integral_{0}^{1}xdx [/mm] $

b) [mm] $\integral_{0}^{1}x^{2} [/mm] dx$

Hallo,

bei a) [mm] $\integral_{0}^{1}xdx= \limes_{n\rightarrow \infty}\sum_{i=1}^{n}f(x_{i})\Delta [/mm] x $

Es gilt: [mm] $\Delta [/mm] x = [mm] \frac{b-a}{n}$ [/mm] und [mm] $x_{i}=a+(\Delta [/mm] x )i$
[mm] $\Rightarrow \limes_{n\rightarrow \infty}\sum_{i=1}^{n}\frac{i}{n^{2}}$ [/mm]
das ist aber [mm] $\infty$ [/mm] und nicht [mm] $\frac{1}{2}$ [/mm]

Was habe ich falsch gemacht?


Danke und Gruss

kushkush

        
Bezug
Riemann Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:08 Di 08.03.2011
Autor: kamaleonti

Hallo kushkush,
> Berechne mit Riemannschen Summen folgende Integrale:
>  
>
> a) [mm]\integral_{0}^{1}xdx[/mm]
>  
> b) [mm]\integral_{0}^{1}x^{2} dx[/mm]
>  Hallo,
>  
> bei a) [mm]\integral_{0}^{1}xdx= \limes_{n\rightarrow \infty}\sum_{i=1}^{n}f(x_{i})\Delta x[/mm]
>  
> Es gilt: [mm]\Delta x = \frac{b-a}{n}[/mm] und [mm]x_{i}=a+(\Delta x )i[/mm]

mit b=1, a=0.

>  
> [mm]\Rightarrow \limes_{n\rightarrow \infty}\sum_{i=1}^{n}\frac{i}{n^{2}}[/mm]
> das ist aber [mm]\infty[/mm] und nicht [mm]\frac{1}{2}[/mm]

Wirklich? Du hast wohl übersehen, dass du noch [mm] \frac{1}{n^2} [/mm] aus der Summe herausziehen kannst. Zusammen mit der gaußschen Summenformel ergibt sich der gewünschte Grenzwert.

>
> Was habe ich falsch gemacht?
>  
>
> Danke und Gruss
>  
> kushkush

Gruß

Bezug
                
Bezug
Riemann Summe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:22 Di 08.03.2011
Autor: kushkush

Hallo,


< Summenformel

Ok.


bei b)

käme man dann auf [mm] $\limes_{n \rightarrow \infty} \frac{1}{n^{2}}\sum_{i=1}^{n}i^{2}= \frac{n(n+1)(2n+1)}{6}$ [/mm]

[mm] \Rightarrow \frac{2}{6}=\frac{1}{3}$ [/mm]

Danke!

kushkush



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]