Riemann-Summe < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Beweisen sie mit Hilfe geeigneter Riemannsummen, dass
[mm] \integral_{a}^{b}{e^{-t} dt} [/mm] = [mm] e^{-a}-e^{-b} [/mm] gilt. |
Hallo,
ich stelle erstmal mein bisherigen Weg vor:
Es gilt:
[mm] \integral_{a}^{b}{e^{-t} dt}= \limes_{n\rightarrow\infty}\summe_{n=0}^{n-1}f(t_{k})*(t_{k+1}-t_{k}),
[/mm]
wobei [mm] t_{k} [/mm] eine äquidistante Zerlegung mit [mm] t_{k}= a+\bruch{(a+b)*k}{n}
[/mm]
sei.
Dann hab ich alles eingesetzt, umgeformt und jetzt stehe ich hier:
[mm] \limes_{n\rightarrow\infty}\bruch{(a-b)}{n}*\summe_{n=0}^{n-1} e^{-a}*e^{\bruch{-(a-b)*k}{n}}
[/mm]
Leider weiss ich jetzt nicht, wie es weitergehen könnte. Leider bin ich mir auch nicht sicher, ob meine Zerlegung gut gewählt. Ich habe bis jetzt zu jeder Aufgabe die Zerlegung immer gegeben bekommen und die waren meißt so merkwürdig, da würde man ja nie drauf kommen. also wie kommt man im Allgemeinen auf eine gute Zerlegung??
Bin dankbar für jede Antwort.
MFG
Robert
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:20 Sa 25.11.2006 | Autor: | Riley |
Hi Robert,
versuchs mal mit folgender Zerlegung:
[mm] Z_n=\{a, a+\frac{b-a}{n}, a+2\frac{b-a}{n},..., a + n \frac{b-a}{n} =b\}
[/mm]
dann gilt:
[mm] R(f,Z_n) [/mm] = [mm] \summe_{k=1}^{n-1} e^{-(a+k\frac{b-a}{n})} \cdot \frac{b-a}{n} [/mm] = [mm] \frac{b-a}{n} e^{-a} \summe_{k=1}^{n-1}e^{-k\frac{b-a}{n}}
[/mm]
wenn du das weiter vereinfachst (geometrische reihe...) und den grenzwert betrachtest, kommt tatsächlich [mm] e^{-a}-e^{-b} [/mm] raus !
viele grüße
riley
|
|
|
|
|
Hallo,
ich habe jetzt mal bei deinem letzten Ansatz weiter gerechnet:
$ [mm] \frac{b-a}{n} e^{-a} \summe_{k=1}^{n-1}e^{-k\frac{b-a}{n}} [/mm] $
unter benutzung der geo. Reihe folgt:
= $ [mm] \frac{b-a}{n} e^{-a} (\bruch{e^{-b+a} +1}{-e+1}) [/mm] $
= $ [mm] \frac{b-a}{n} (\bruch{-e^{-b} +-e^{-a}}{-e+1}) [/mm] $
Wenn ich jetzt davon den Grenzwert bilde, komme ich nicht weit, da [mm] \frac{b-a}{n} [/mm] gegen 0 geht. Ich weiss nicht, ob ich die geo. Reihe richtig angewandt habe, aber ich glaube mal gelernt zu haben, dass folgendes gilt:
[mm] \summe_{k=0}^{n-1}q^{k}= \bruch{-q^{k}+1}{-q+1}.
[/mm]
Also wenn die Summe nur bis n-1 geht, kann ich auf der anderen Seite q anstatt q+1 einsetzten.
Danke für die Hilfe.
MFG
Robert
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:23 So 26.11.2006 | Autor: | Riley |
Hi Robert,
also die geometrische reihe ist: [mm] \summe_{k=0}^{n} q^k [/mm] = [mm] \frac{q^{n+1}-1}{q-1} [/mm] und wenn nur bis n-1 summiert wird: [mm] \summe_{k=0}^{n-1}q^k= \frac{q^n-1}{q-1}.
[/mm]
damit gilt:
[mm] \frac{b-a}{n} e^{-a} \summe_{k=0}^{n-1}e^{-k\frac{b-a}{n}} [/mm] = [mm] \frac{b-a}{n} e^{-a} \frac{e^{(-b+a)} -1}{ e^{\frac{-b+a}{n}}-1}
[/mm]
im nenner bleibt der exponent von e, das hattest du vergessen. vielleicht ist es einleuchtender wenn man es so aufschreibt:
[mm] \summe_{k=0}^{n} (e^{\frac{-(b-a)}{n}})^k.
[/mm]
die idee das [mm] e^{-a} [/mm] reinzumultiplizieren ist gut... betrachte also folgenden grenzwert:
[mm] \limes_{n\rightarrow\infty}\frac{1}{n}(b-a) \frac{e^{-b} - e^{-a}}{e^{\frac{-b+a}{n}}-1}= \limes_{n\rightarrow\infty}\frac{ \frac{1}{n} (b-a)}{e^{\frac{1}{n} (a-b)} -1 } (e^{-b} [/mm] - [mm] e^{-a} [/mm] )
viele grüße
riley
|
|
|
|
|
Hallo,
erstmal danke für deine Hilfe und Mühe.
Aber irgendwie habe ich das Gefühl, dass diese Rechnung auf nichts läuft.
Wenn ich deine Rechnung fortsetzen darf:
$ [mm] \limes_{n\rightarrow\infty}\frac{ \frac{1}{n} (b-a)}{e^{\frac{1}{n} (a-b)} -1 } (e^{-b} [/mm] $ - $ [mm] e^{-a} [/mm] $ )
= [mm] (e^{-b} [/mm] - [mm] e^{-a} [/mm] ) [mm] \limes_{n\rightarrow\infty}\frac{ \frac{1}{n} (b-a)}{e^{\frac{1}{n} (a-b)} -1 } [/mm]
Um jetzt mein Ergebnis zu erhalten muss doch der Grenzwert
[mm] \limes_{n\rightarrow\infty}\frac{ \frac{1}{n} (b-a)}{e^{\frac{1}{n} (a-b)} -1 } [/mm] = 1 sein.
Aber ich komme auf:
[mm] \limes_{n\rightarrow\infty}\frac{b-a}{n(e^{\frac{1}{n} (a-b)} -1) } [/mm]
und in diesem Fall geht der Nenner doch eindeutig gegen null!!
habe ich irgendetwas falsch gemacht oder kann man diesen Grenzwert irgendwie anders angehen???
Gute nacht.
Robert
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:03 Mo 27.11.2006 | Autor: | Riley |
Hi Robert,
neeh, so kann man das nicht sagen... wenn du das 1/n im zähler stehen lässt, siehst du, dass zähler UND nenner gegen 0 gehen.
vielleicht hilft diese umformung:
[mm] \limes_{n\rightarrow\infty}\frac{ \frac{1}{n} (b-a)}{e^{\frac{1}{n} (a-b)} -1 } [/mm] = [mm] \limes_{h\rightarrow 0}\frac{ h (b-a)}{e^{h(a-b)} -1 }
[/mm]
fällt dir eine französische Regel ein, die man dann verwenden darf?
wenn du l'hospital angewendet hast wirst du sehen, dass sich einiges kürzt.
übrigens sollte dann auch -1 und nicht 1 rauskommen damit du dein ergebnis bekommst!
viele grüße
riley
|
|
|
|
|
Hi riley,
dieser Weg ist mir gestern auch noch eingefallen, daß Problem ist nur, dass wir die Regel von L'Hopital in der Vorlesung noch nicht hatten und somit auch noch nicht bewiesen haben. Deshalb habe ich viele andere Umformungen probiert, aber ich komme da nie auf das Ergebnis, welches mir L'Hopital liefert. Hat da jemand eine Idee wie man den Grenzwert ohne L'Hopital ausrechnen könnte?
Gruß
Robert
|
|
|
|
|
Hi,
Aufgabe hat sich erledigt, habe jetzt einen anderen Weg gefunden, den grenzwert zu brechnen.
Vielen dank noch mal für die Hilfe.
|
|
|
|