www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Riemann-Integrierbarkeit
Riemann-Integrierbarkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Riemann-Integrierbarkeit: Beweis verstehen
Status: (Frage) überfällig Status 
Datum: 19:53 Mi 21.05.2014
Autor: mikexx

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Ich zitiere aus Wirsching, "Gewöhnliche Differentialgleichungen".

\textbf{Satz 10.2} Seien $M\subset\mathbb{R}^N$ Jordan-messbar und $f\colon\bar{M}\to\mathbb{R}$ stetig. Dann ist $f$ über $M$ Riemann-integrierbar.

\textbf{Beweis}
Zum Beweis des N-dimensionalen Falls kann man den Beweis in einer Dimension, der als bekannt vorausgesetzt wird, fast wörtlich übernehmen. Hier eine Skizze:

Weil $M$ Jordan-messbar ist, ist $M$ eine beschränkte Menge. Also ist ihr Abschluss $\bar{M}$ kompakt. Daraus folgt, dass $f$ beschränkt und gleichmäßig sttig ist; bezeichne $B:=\sup_{x\in M}\lvert f(x)\rvert$.

Sei jetzt $\varepsilon >0$ beliebig. Zur Approximation von unten wählt man zunächst endliche viele paarweise disjunkte offene N-dimensionale Intervalle, die das Volumen von $M$ genau genug approximieren:

$vol(M)-\sum_{j}vol(Q_j)\leqslant\frac{\varepsilon}{2B}$.

Wegen der gleichmäßigen Stetigkeit von $f$ kann man dann durch Unterteilen diese Intervalle so klein machen, dass die Schwankung von $f$ auf jedem der N-dimensionalen Teilintervalle $Q_j$ die folgende Ungleichung erfüllt:

$\text{osc}_f(Q_j)\leqslant\frac{\varepsilon}{vol(M)}$.

Analog approximiert man $M$ von oben durch genügend kleine paarweise disjunkte kompakte N-dimensionale Intervalle $K_l$, auf denen die Schwankung von $f$ ebenfalls obige Ungleichung erfüllt.

Man erhält so zunächst für alle $x\in M$ die Ungleichungskette

$\sum_j}(\inf_{y\in Q_j} f(y))\cdot\chi_{Q_j}(x)\leqslant f(x)\leqslant\sum_l (\sup_{y\in K_l} f(y))\cdot\chi_{K_l}(x)$,

dann daraus die Ungleichungskette

$\sum_{j}(\inf_{y\in Q_j}f(y))\cdot vol(Q_j)\leqslant\int_* f\leqslant\int^{*} f\leqslant\sum_l (\sup_{y\in K_l}f(y))\cdot vol(K_l)$

und schließlich nach Konstruktion der $Q_j$ und der $K_l$ die Abschätzung

$\left\lvert\sum_l (\sup_{y\in K_l}f(y))\cdot vol(K_l)-\sum_j (\inf_{y\in Q_j}f(y))\cdot vol(Q_j)\right\rvert\leqslant\varepsilon$.


Hallo!

Mein Hauptproblem ist, dass ich nicht verstehe, wieso am Ende

$\left\lvert\sum_l (\sup_{y\in K_l}f(y))\cdot vol(K_l)-\sum_j (\inf_{y\in Q_j}f(y))\cdot vol(Q_j)\right\rvert\leqslant\varepsilon$

ist.

Ich denke hier gehen die speziellen Wahlen $\frac{\varepsilon}{2B}$ und $\frac{\varepsilon}{2vol(M)}$ ein, aber das alles sehe ich leider nicht.


Wenn mir DAS jemand erklären könnte, wäre ich sehr froh, da ich absolut nicht weiter komme.


Mit ganz lieben Grüßen

mikexx

        
Bezug
Riemann-Integrierbarkeit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Fr 23.05.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]