www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Richtungsableitung
Richtungsableitung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Richtungsableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 05:45 Sa 27.03.2010
Autor: Garfield_II

Aufgabe
Ableitung in (0,0) von

[mm] f(x,y)=\begin{cases} \bruch {3x^2y-y^3}{x^2+y^2}, & \mbox{für } (x,y)\not= (0,0) \\ 0, & \mbox{für }(x,y)=(0,0) \end{cases} [/mm]


# Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

also ich denke mal, dass ich hier über den Differentialquotienten gehen muss. Aber wie mache ich das? Ich hab mir gedacht, ich halte, wie bei der einfachen Richtungsableitung eine Koordinate konstant und gucke, was passiert, wenn ich mit der anderen gegen Null gehe und dann umgekehrt:

[mm] \limes_{(x,y)\rightarrow (0,0)}\bruch{\bruch {3x^2y-y^3}{x^2+y^2} - 0}{(x,y) - (0,0)} [/mm]

= [mm] (\bruch{-y}{y},\bruch{0}{x}) [/mm]
= (-1,0)

Stimmt das so?

        
Bezug
Richtungsableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:39 Sa 27.03.2010
Autor: leduart

Hallo
dein Ausdruck
$ [mm] \limes_{(x,y)\rightarrow (0,0)}\bruch{\bruch {3x^2y-y^3}{x^2+y^2} - 0}{(x,y) - (0,0)} [/mm] $
ist keine Ableitung. was soll denn Zahl durch "Vektor" bedeuten, was du rauskriegst scheint ein Vektor zu sein?
Du hast f(0,y)/y gerechnet,ws soll das sein?
Gruss leduart

Bezug
                
Bezug
Richtungsableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:22 Sa 27.03.2010
Autor: Garfield_II

so geht es also nicht. irgend ein tipp, wie ich die sache angehen sollte?

Bezug
                        
Bezug
Richtungsableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:26 Sa 27.03.2010
Autor: leduart

Hallo
Schreib doch erstmal die partiellen Ableitungen für [mm] x,y\ne0 [/mm] hin und mach den Grenzübergang nach 0. vergleich das mit den Differenzenquotienten  und dessen GW bei x=0 aber nur die partiellen Ableitungen!
(Hast du vorher gezeigt, ob die fkt stetig in (0,0) ist?)
Gruss leduart

Bezug
                                
Bezug
Richtungsableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:51 Sa 27.03.2010
Autor: Garfield_II

[mm] f(x,y)=\begin{cases} \bruch {3x^2y-y^3}{x^2+y^2}, & \mbox{für } (x,y)\not= (0,0) \\ 0, & \mbox{für }(x,y)=(0,0) \end{cases} [/mm]



[mm] \limes_{(x,y)\rightarrow (0,0)} f_x'(x,y)=\limes_{(x,y)\rightarrow (0,0)}\bruch{6xy}{2x}=\limes_{(x,y)\rightarrow (0,0)}3y=? [/mm]
[mm] \limes_{(x,y)\rightarrow (0,0)}f_y'(x,y)=\limes_{(x,y)\rightarrow (0,0)}\bruch {3x^2-3y^2}{2y}=? [/mm]


also wenn die richtungsableitungen so stimmen, wie mache ich dann den grenzübergang?

Bezug
                                        
Bezug
Richtungsableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:10 Sa 27.03.2010
Autor: leduart

Hallo
Deine Ableitungen sind falsch. hast du schon mal was von Produkt oder Quotienten regel gehört?
Gruss leduart

Bezug
                                                
Bezug
Richtungsableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:57 Sa 27.03.2010
Autor: Garfield_II

oje, ja da hab ich schon mal von gehört.

[mm] \limes_{(x,y)\rightarrow (0,0)} f_x'(x,y)=\limes_{(x,y)\rightarrow (0,0)}\bruch{4xy^3}{(x^2+y^2)^2}=? [/mm]
[mm] \limes_{(x,y)\rightarrow (0,0)}f_y'(x,y)=\limes_{(x,y)\rightarrow (0,0)}\bruch {3x^4-y^4-6x^2y^2}{(x^2+y^2)^2}=\limes_{(x,y)\rightarrow (0,0)}\bruch{3(x^2-y^2)^2-4y^4}{(x^2+y^2)^2}=? [/mm]

hoffentlich stimmt's nun. aber wie weiter?

Bezug
                                                        
Bezug
Richtungsableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:40 Sa 27.03.2010
Autor: MathePower

Hallo Garfield_II,

> oje, ja da hab ich schon mal von gehört.
>  
> [mm]\limes_{(x,y)\rightarrow (0,0)} f_x'(x,y)=\limes_{(x,y)\rightarrow (0,0)}\bruch{4xy^3} {(x^2+y^2)^2}=?[/mm]


Hier habe ich: [mm] \bruch{\blue{8}xy^3}{(x^2+y^2)^2}[/mm]


>  
> [mm]\limes_{(x,y)\rightarrow (0,0)}f_y'(x,y)=\limes_{(x,y)\rightarrow (0,0)}\bruch {3x^4-y^4-6x^2y^2}{(x^2+y^2)^2}=\limes_{(x,y)\rightarrow (0,0)}\bruch{3(x^2-y^2)^2-4y^4}{(x^2+y^2)^2}=?[/mm]


Die partielle Ableitung nach y stimmt.


>  
> hoffentlich stimmt's nun. aber wie weiter?


Wähle hier zum Beispiel [mm]y=a*x, \ a \not= 0[/mm]
und bilde den Grenzübergang für x gegen 0.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]