www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Finanzmathematik" - Rentenrechnung
Rentenrechnung < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rentenrechnung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:49 So 09.01.2011
Autor: dfbadler

Aufgabe
Frau Sparsam zahlt sechs Jahre lang monatlich (am Ende eines jeden Monats) 100 Euro auf ihr Sparbuch ein. Am Ende des siebten Jahres erhält sie zusätzlich eine Prämie von 14% auf die eingezahlten Beträge.
Anschließend steht das Kapital zur freien Verfügung. Die Zinsen betragen 2% jährlich (lineare Verzinsung innerhalb des Jahres).

a) Wie hoch ist das Endkapital (einschließlich Zinsen und Prämie) von Frau Sparsam nach sieben Jahren?

Hallo,
zur Aufgabe

[mm] r_{e}=r*(m+\bruch{(m-1)*i}{2}) [/mm]

[mm] R_{n}= =\begin{cases} r_{e}*\bruch{(1+s)^{n}-(1+i)^{n}}{s-i}, & \mbox{falls } s\not=i \mbox{ } \\ r_{e}*(1+s)^{n-1}*n, & \mbox{falls } s=i \mbox{ } \end{cases} [/mm]

gegeben:
r= 100
m=12
i=2%

[mm] r_{e}= [/mm] 1211 Euro
wenn ich dann das Kapiatal erst von 6 Jahren ausrechnen möchte,dann
[mm] R_{6}= 1211*(1+0.02)^{5}*6=8022.25 [/mm] Euro

Laut der Lösung im Buch beträgt das Kapital nach 6 Jahren 7639.13 Euro.
Wie kommt man auf das Ergebnis, denn ich habe die Gleichung für s=i genommen, da s nicht vorgegeben ist.Falls ich die erste Gleichung benutzen muss,also [mm] s\not=i, [/mm] wie berrechne ich dann s wenn es nicht vorgegeben ist?
Gruß
dfbadler


        
Bezug
Rentenrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:13 So 09.01.2011
Autor: Josef

Hallo dfbadler,

> Frau Sparsam zahlt sechs Jahre lang monatlich (am Ende
> eines jeden Monats) 100 Euro auf ihr Sparbuch ein. Am Ende
> des siebten Jahres erhält sie zusätzlich eine Prämie von
> 14% auf die eingezahlten Beträge.
>  Anschließend steht das Kapital zur freien Verfügung. Die
> Zinsen betragen 2% jährlich (lineare Verzinsung innerhalb
> des Jahres).
>  
> a) Wie hoch ist das Endkapital (einschließlich Zinsen und
> Prämie) von Frau Sparsam nach sieben Jahren?
>  Hallo,
>  zur Aufgabe
>
> [mm]r_{e}=r*(m+\bruch{(m-1)*i}{2})[/mm]


[ok]

>  
> [mm]R_{n}= =\begin{cases} r_{e}*\bruch{(1+s)^{n}-(1+i)^{n}}{s-i}, & \mbox{falls } s\not=i \mbox{ } \\ r_{e}*(1+s)^{n-1}*n, & \mbox{falls } s=i \mbox{ } \end{cases}[/mm]
>  



[mm] R_n [/mm] = [mm] r_e *\bruch{q^n -1}{i} [/mm]

> gegeben:
>  r= 100
>  m=12
>  i=2%
>  

[ok]

> [mm]r_{e}=[/mm] 1211 Euro

[ok]

>  wenn ich dann das Kapiatal erst von 6 Jahren ausrechnen
> möchte,dann
>  [mm]R_{6}= 1211*(1+0.02)^{5}*6=8022.25[/mm] Euro
>  

[notok]

> Laut der Lösung im Buch beträgt das Kapital nach 6 Jahren
> 7639.13 Euro.


[mm] 1.211*\bruch{1,02^6 -1}{0,02} [/mm] = 7.639,13


Viele Grüße
Josef

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]