www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Relativ Prim
Relativ Prim < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Relativ Prim: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:37 So 03.03.2013
Autor: sissile

Aufgabe
Given a positive integer k, we can find infinitely many positive
integers a such that the k integers in the set
a + 1 , 2a + 1 , . . . , ka + 1
are pairwise relatively prime.

Proof. Let a be any positive integer which is divisible by all of the prime numbers
which are less than k. We claim that a + 1, 2a + 1, . . . , ka + 1 are pairwise
relatively prime. Suppose not. Let i and j be such that 1 ≤ i < j ≤ k and ia+1
and ja+1 are not relatively prime. Let p be a prime number which is a factor of both ia+1 and ja+1. Then p cannot be a factor of m. Hence p is greater than or equal to k. On the other hand p is a factor of (ja + 1) − (ia + 1) = (j − i)a.
Hence p is a factor of j − i. But j − i is less than k, hence p is less than k, a
Widerspruch.

Hallo
Was soll m sein? . Denn genau die Stelle verstehe ich nicht, dass p [mm] \ge [/mm] k sein muss.
Hat da wer eine Idee, wwarum das gilt?

Liebe grüße

        
Bezug
Relativ Prim: Antwort
Status: (Antwort) fertig Status 
Datum: 09:54 So 03.03.2013
Autor: felixf

Moin!

> Given a positive integer k, we can find infinitely many
> positive
>  integers a such that the k integers in the set
>  a + 1 , 2a + 1 , . . . , ka + 1
>  are pairwise relatively prime.
>  
> Proof. Let a be any positive integer which is divisible by
> all of the prime numbers
>  which are less than k. We claim that a + 1, 2a + 1, . . .
> , ka + 1 are pairwise
>  relatively prime. Suppose not. Let i and j be such that 1
> ≤ i < j ≤ k and ia+1
>  and ja+1 are not relatively prime. Let p be a prime number
> which is a factor of both ia+1 and ja+1. Then p cannot be a
> factor of m. Hence p is greater than or equal to k. On the
> other hand p is a factor of (ja + 1) − (ia + 1) = (j −
> i)a.
>  Hence p is a factor of j − i. But j − i is less than
> k, hence p is less than k, a
>  Widerspruch.
>
>  Hallo
>  Was soll m sein?

Wenn $m = a$ sein soll (ist vermutlich so gemeint gewesen), dann stimmt alles.

LG Felix


Bezug
                
Bezug
Relativ Prim: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:07 So 03.03.2013
Autor: sissile

Hallo,
ok -> p teilt nicht a
Denn wenn p teilt ia+1 und p teil a so würde p die 1 teilen .

danke
LG

Bezug
                        
Bezug
Relativ Prim: Antwort
Status: (Antwort) fertig Status 
Datum: 21:07 So 03.03.2013
Autor: reverend

Hallo sissile,

ist das eine Frage? Oder hast Du Dich nur verklickt?

>  ok -> p teilt nicht a

>  Denn wenn p teilt ia+1 und p teil a so würde p die 1
> teilen .

Jawollja. Genau. So isses.

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]