www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Relationen" - Relationen auf \IZ
Relationen auf \IZ < Relationen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Relationen auf \IZ: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:54 Di 20.11.2007
Autor: muy

Aufgabe
a) Auf der Menge [mm] \IZ [/mm] sei eine Relation R erklärt durch (x,y) [mm] \in [/mm] R [mm] \gdw [/mm] xy [mm] \ge [/mm] 0. Ist R eine Äquivalenzrelation? (mit Beweis)
b) Auf der Menge [mm] \IZ [/mm] \ {0} sei eine Relation S erklärt durch (x,y) [mm] \in [/mm] S [mm] \gdw [/mm] xy > 0. Ist S eine Äquivalenzrelation? (mit Beweis)
c) Falls bei a) oder b) eine Äquivalenzrelation vorliegt, geben Sie die zugehörigen Äquivalenzklassen an.

Kann mir jemand die Aufgabe erklären? Ich habe noch nicht einmal eine Idee was man von mir will, geschweige denn eine Idee für eine Lösung... :(

Was genau bedeutet denn zum Beispiel diese Erklärung der Relation...? Und was soll es ändern, wenn auf [mm] \IZ [/mm] \ {0} xy > 0 ist...?

Hilfe. [mm] :\ [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Relationen auf \IZ: Antwort
Status: (Antwort) fertig Status 
Datum: 17:47 Di 20.11.2007
Autor: angela.h.b.


> a) Auf der Menge [mm]\IZ[/mm] sei eine Relation R erklärt durch
> (x,y) [mm]\in[/mm] R [mm]\gdw[/mm] xy [mm]\ge[/mm] 0. Ist R eine Äquivalenzrelation?
> (mit Beweis)
>  b) Auf der Menge [mm]\IZ[/mm] \ {0} sei eine Relation S erklärt
> durch (x,y) [mm]\in[/mm] S [mm]\gdw[/mm] xy > 0. Ist S eine
> Äquivalenzrelation? (mit Beweis)
>  c) Falls bei a) oder b) eine Äquivalenzrelation vorliegt,
> geben Sie die zugehörigen Äquivalenzklassen an.

Hallo,

alles beginnt hier damit, daß Du weißt, was eine Äquivalenzrelation ist.

Weißt Du das?

Wenn nicht, mach Dich schlau.

Zu prüfen ist halt, ob die Bedigungen der Äquivalenzrelation für die hier erklärte Relation R gelten.

> Was genau bedeutet denn zum Beispiel diese Erklärung der
> Relation...?

Bei a) stehen zwei Elemente in Relation zueinander, wenn Ihr Produkt [mm] \ge [/mm] 0 ist.
Das ist halt so definiert.

> Und was soll es ändern, wenn auf $ [mm] \IZ [/mm] $ \ {0} xy > 0 ist...?

Das sollst Du dann ja herausfinden...
Die Lebenserfahrung lehrt: es ändert sich etwas, sonst stünde die Aufgabe nicht hier.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]