www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Relationen
Relationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Relationen: "Lösung"
Status: (Frage) beantwortet Status 
Datum: 07:36 Mi 24.11.2004
Autor: Ursus

Hi Leute!
Ich hab Probleme bei diesen Beispielen.
1.) Geben sie jeweils ein Beispiel für eine Relation, die
  a) antisymmetrisch, und transitiv, aber nicht reflexiv ist,
  b) reflexiv, antisymmetrisch und transitiv ist.

zu a) Mir fällt keine Relation ein, die nur antisymmetrisch ist, weil wenn sie antisymmetrisch ist, dann ist sie auch reflexiv oder??

Bitte helft mir weiter, und wenns geht bitte genau den Unterschied zwischen reflexiv und antisymmetrisch erklären.

Vielen, vielen Dank!
mfg URSUS

        
Bezug
Relationen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:30 Mi 24.11.2004
Autor: andreas

hi

bei a) gibt es ein ganz einfaches beispiel: [m] R := \emptyset [/m], aber auch z.b. [m] R := \{(a, b)\} [/m], wenn du die relation auf einer menge definierst, die die elemente $a$ und $b$ enthält usw.

bei b) kannst du jede beliebige "ordnungsrelation" nehmen, also z.b. die relation die auf [mm] $\mathbb{R}$ [/mm] durch [m] (a, b) \in R :\Longleftrightarrow a \leq b [/m] oder für [m] M \not=\emptyset [/m] beliebige menge die relation auf ihrer potenzmenge [m] \mathcal{P}(M) [/m] die definiert wird durch [m] (M_1, M_2) \in R : \Longleftrightarrow M_1 \subseteq M_2 [/m]. auch hier gibt es viele weitere beispiele.

grüße
andreas

Bezug
        
Bezug
Relationen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:44 Mi 24.11.2004
Autor: Ursus

Vielen Dank für die Hilfe!
Jetzt ist mir einiges klarer! Lg URSUS

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]