www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Graphentheorie" - Relationen
Relationen < Graphentheorie < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Relationen: Aufgabe 1
Status: (Frage) überfällig Status 
Datum: 18:25 Fr 17.11.2006
Autor: DMG

Aufgabe
Gibt es Zahlen n,k [mm] \in \IN [/mm] , sodass [mm] (2^{ {0,....,n} },\subseteq) [/mm] isomorph zu [mm] ({0,...,k},\le) [/mm] ist?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich weiß nicht, ob es wichtig ist, aber bei dem Ausdruck [mm] (2^{ {0,....,n} },\subseteq) [/mm] muss der Wert 0,....,n in geschweiften Klammern stehen.
Nun meine Frage und meine Ansätze.
Isomorph bedeutet, dass eine Bijektion existiert zwischen den Relationen. [mm] (2^{ {0,....,n} },\subseteq) [/mm] ist eine Halbordnung und [mm] ({0,...,k},\le) [/mm] eine totale Halbordnung. Dabei ist [mm] ({0,...,k},\le) [/mm] eine aufsteigende Ordnung in einem [mm] Strang,(2^{ {0,....,n} },\subseteq) [/mm] hat dagegen eine verzweigte Struktur, da es ja die Potenzmenge ist oder irre ich mich?
Jedenfalls können diese beiden Relationen gar nicht bijektiv sein oder? Da sie völlig verschiedene Zuordnung und eigentlich auch unterschiedlich viele Elemente haben. Könnte mir jemand sagen, ob meine Überlegung richtig ist oder ich einfach einen Knick in der Logik habe.

mfg Gunnar


        
Bezug
Relationen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Di 21.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]