www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Relationen" - Relation untersuchen
Relation untersuchen < Relationen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Relation untersuchen: Tipp
Status: (Frage) beantwortet Status 
Datum: 12:12 Mo 03.12.2012
Autor: Ideas

Aufgabe
Gegeben ist die Relation
Q [mm] \subseteq (\IZ [/mm] x [mm] \IZ [/mm] -{0}) x [mm] (\IZ [/mm] x [mm] \IZ [/mm] -{0})
mit (a,b)Q(c,d) : ad - bc = 0
Untersuchen sie auf 1.Reflexivität, 2.Symmetrie, 3.Antisymmetrie, 4.Transitivität

Vorweg meine Ideen, dann die Frage:

Meine Lösungsansätze sind:

1.
xQx [mm] \Rightarrow [/mm] (a,b)Q(a,b) [mm] \Rightarrow [/mm] ab - ba = 0
offensichtlich wegen Kommutativgesetz

2.
xQy [mm] \Rightarrow [/mm] yQx [mm] \Rightarrow [/mm] (a,b)Q(c,d) [mm] \Rightarrow [/mm] (c,d)Q(a,b)

(a,b)Q(c,d) ad - bc = da - cb
[mm] \Rightarrow [/mm] da - cb = 0 = cb - da [mm] \Rightarrow [/mm] (c,d) Q (a,b)

3.

xQy [mm] \wedge [/mm] yQx : x=y [mm] \Rightarrow [/mm] (a,b)Q(c,d) [mm] \wedge [/mm] (c,d)Q(a,b) : ab=cd
I.  ad - bc = 0
II. cb - da = 0 | : b [mm] \Rightarrow [/mm] c = [mm] \bruch{da}{b} [/mm] | in I.

ad - [mm] (\bruch{d*a}{b}) [/mm] * b = 0  [mm] \Rightarrow [/mm] ad - [mm] \bruch{d*a*b}{b} [/mm] = 0 | kürzen
[mm] \Rightarrow [/mm] ad - da = 0  [mm] \Rightarrow [/mm] ad = ad

4.
hier bräuchte ich einen Tipp oder ein Vorschlag zur Rangehensweise.
Ich würde auch hier mit Gleichungen arbeiten.


Danke für die Hilfe :)

        
Bezug
Relation untersuchen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:25 Mo 03.12.2012
Autor: itzepo11

$(a,b) [mm] \sim [/mm] (c,d)$ und $(c,d) [mm] \sim [/mm] (e,f)$. zu zeigen ist $(a,b) [mm] \sim [/mm] (e,f)$ ,d.h. $af-be = 0$.

ich wuerde die Gleichung $ad-bc=0$ mit $f$ multiplizieren und dann $cf$ mit Hilfe von $cf - de=0$ umschreiben. Dann brauchst du noch, dass $d [mm] \neq [/mm] 0$.

Bezug
                
Bezug
Relation untersuchen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:56 Mo 03.12.2012
Autor: Ideas

Du meinst also

$ I.$   $ad - bc = 0$   | *f
$ I.$   $adf - bcf = 0 $
$ cf = de$   | in I.

$ adf - bde = 0 $

Tut mir leid wenn ich grade nochmal so banal nachfragen muss aber ich komm mit der kurzen Antwort grade nicht wirklich weiter.

ist nicht böse gemeint aber ich bin grade mehr verwirrt als vorher :)

Bezug
                        
Bezug
Relation untersuchen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:18 Mo 03.12.2012
Autor: itzepo11

$adf-bde=0$.
Jetzt das $d$ ausklammern
$d(af-be)=0$
und weil $d$ nach Voraussetung ungleich Null ist, gilt dann
$af-be=0$, also $(a,b) [mm] \sim [/mm] (e,f)$.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]