www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Mathematik" - Relation
Relation < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Relation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 06:59 Di 10.03.2009
Autor: pioneer

Aufgabe
Sei X die Menge der Österreicherinnen und Österreicher mit
der Relation:
xRy ⇐⇒ x ist mit y verheiratet.
Die Relation ist auf die Eigenschaften
Reflexivität, Symmetrie, Antisymmetrie und Transitivität zu untersuchen.
Stelle auch fest, ob eine Äquivalenzrelation oder Halbordnungsrelation vorliegt.

Hallo!

Bei der Reflexivität soll ich ja zeigen, dass die Relation für alle Elemente x und y aus X gilt.
Bei diesem Beispiel ist es klarerweise nicht der Fall, da ja nicht jeder Österreicher mit jeder Österreicherin verheiratet ist.
Weiters glaube ich, ist die Relation auch nicht irreflexiv, da ja nicht grundsätzlich gilt, dass kein x aus X mit einem y aus X verheiratet ist.
Meine Frage wäre, wie schreibe ich das mathematisch auf?

Mit freundlichen Grüßen
pioneer

        
Bezug
Relation: Antwort
Status: (Antwort) fertig Status 
Datum: 07:13 Di 10.03.2009
Autor: statler


> Sei X die Menge der Österreicherinnen und Österreicher mit
>  der Relation:
>  xRy ⇐⇒ x ist mit y verheiratet.
>  Die Relation ist auf die Eigenschaften
>  Reflexivität, Symmetrie, Antisymmetrie und Transitivität
> zu untersuchen.
>  Stelle auch fest, ob eine Äquivalenzrelation oder
> Halbordnungsrelation vorliegt.

Guten Morgen!

> Bei der Reflexivität soll ich ja zeigen, dass die Relation
> für alle Elemente x und y aus X gilt.

Nee überhaupt nicht! Da muß xRx gelten für alle x [mm] \in [/mm] M.

>  Bei diesem Beispiel ist es klarerweise nicht der Fall, da
> ja nicht jeder Österreicher mit jeder Österreicherin
> verheiratet ist.

Das ist nicht der Fall, weil keine(r) mit sich selbst verheiratet ist.

> Weiters glaube ich, ist die Relation auch nicht irreflexiv,
> da ja nicht grundsätzlich gilt, dass kein x aus X mit einem
> y aus X verheiratet ist.

irreflexiv kenne ich nicht, vielleicht ist damit aber eben das gemeint ( xRx für kein x).

Gruß aus HH-Harburg
Dieter

Bezug
                
Bezug
Relation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:22 Di 10.03.2009
Autor: pioneer

Hallo Dieter!

Danke für deine schnelle Antwort!

> > Bei der Reflexivität soll ich ja zeigen, dass die Relation
> > für alle Elemente x und y aus X gilt.
>  
> Nee überhaupt nicht! Da muß xRx gelten für alle x [mm]\in[/mm] M.

Aha, also zu sich selbst.


> >  Bei diesem Beispiel ist es klarerweise nicht der Fall, da

> > ja nicht jeder Österreicher mit jeder Österreicherin
> > verheiratet ist.
>
> Das ist nicht der Fall, weil keine(r) mit sich selbst
> verheiratet ist.

Ok, ist dann schon klar.

> > Weiters glaube ich, ist die Relation auch nicht irreflexiv,
> > da ja nicht grundsätzlich gilt, dass kein x aus X mit einem
> > y aus X verheiratet ist.
>  
> irreflexiv kenne ich nicht, vielleicht ist damit aber eben
> das gemeint ( xRx für kein x).

Das habe ich hier gefunden: http://de.wikipedia.org/wiki/Reflexive_Relation

Mich würde aber trotzdem interessieren wie ich das mathematisch aufschreibe.

Mit freundlichen Grüßen
pioneer


Bezug
                        
Bezug
Relation: Antwort
Status: (Antwort) fertig Status 
Datum: 07:31 Di 10.03.2009
Autor: angela.h.b.


> > > Weiters glaube ich, ist die Relation auch nicht irreflexiv,

Hallo,

irreflexiv bedeutet, daß sämtliche x nicht zu sich selbst in Relation stehen.

Da jeder Österreicher nicht mit sich selbst verheiratet ist, gilt dies. Die relation ist irreflexiv.

Gruß v. Angela

Bezug
                                
Bezug
Relation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:34 Di 10.03.2009
Autor: pioneer

Hallo Angela!

Danke für deine Antwort! Nach Dieters Erklärung ist mir dies gerade aufgefallen. Trotzdem danke

mfg
pioneer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]