www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Relation
Relation < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Relation: Frage
Status: (Frage) beantwortet Status 
Datum: 17:43 Sa 08.01.2005
Autor: Edi1982

Hi Leute.
Ich habe versucht in den Freien ein aar Aufgaben zu machen.
Bin gerade bei einer scheinbar leichten Aufgabe, wo mir aber irgendwie der Ansatz fehlt.

Sei ~ eine symmetrische und transitive Relation auf der Menge M. Wo steckt der Fehler in der folgenden Argumentation?

Für a, b [mm] \in [/mm] M mit a ~ b gilt wegen der Symmetrie auch b ~ a. Wegen der Transitivität folgt aus a ~ b und b ~ a auch a ~ a. Die Relation ist also sogar reflexiv und damit eine Äquivalenzrelation.

Das erscheint mir irgendwie logisch, muss aber ein Fehler drin sein.
Könnte mir vielleicht jemand mit einem Gegenbeispiel helfen.

Danke.

        
Bezug
Relation: Antwort
Status: (Antwort) fertig Status 
Datum: 18:12 Sa 08.01.2005
Autor: Clemens

Hallo Eduard!

> Sei ~ eine symmetrische und transitive Relation auf der
> Menge M. Wo steckt der Fehler in der folgenden
> Argumentation?
>  
> Für a, b [mm]\in[/mm] M mit a ~ b gilt wegen der Symmetrie auch b ~
> a. Wegen der Transitivität folgt aus a ~ b und b ~ a auch a
> ~ a. Die Relation ist also sogar reflexiv und damit eine
> Äquivalenzrelation.
>  
> Das erscheint mir irgendwie logisch, muss aber ein Fehler
> drin sein.

Das ist sogar verdammt logisch. Hat nur einen kleinen Haken: Ein Relation ~ auf einer Menge M heißt ja symmetrisch, wenn für alle a,b aus M gilt:
a ~ b [mm] \Rightarrow [/mm] b ~ a
Wenn man nun versuchte, deinen Beweis ganz korrekt zu formulieren, müsste man ja so anfangen:

"Sei a aus M. Ich möchte a ~ a zeigen. Es gibt ein b aus M mit a ~ b. Aus der Symmetrie folgt b ~ a. Aus der Transitivität folgt a ~ a. Also ist ~ reflexiv."

Das Fettgedruckte in dieser Fassung deines Beweises ist dein Fehler. Es gibt gar nicht immer ein solches b.

>  Könnte mir vielleicht jemand mit einem Gegenbeispiel
> helfen.

Ja, natürlich:
Sei M = {1,2} und ~ = {(1,1)}. ~ ist symmetrisch und ~ ist transitiv, aber nicht reflexiv.

Gruß Clemens

Bezug
                
Bezug
Relation: Zur Deutlichkeit
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:54 So 09.01.2005
Autor: Marcel

Hallo Clemens und Edi1982,

ich möchte das ganze nur noch ergänzen, damit man das hier auch wirklich sieht:

> >  Könnte mir vielleicht jemand mit einem Gegenbeispiel

> > helfen.
>  
> Ja, natürlich:
>  Sei M = {1,2} und ~ = {(1,1)}. ~ ist symmetrisch und ~ ist
> transitiv, aber nicht reflexiv.

Denn:
Wäre [mm] $\sim$ [/mm] reflexiv, so müßte auch $(2,2) [mm] \in\; \sim$ [/mm] gelten (da dann ja für alle $x [mm] \in [/mm] M$ auch $(x,x) [mm] \in\; \sim$ [/mm] gelten müßte).
Es kann nämlich sein, dass nicht jeder das sieht. ;-)

Viele Grüße,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]