www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Relation
Relation < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Relation: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 20:56 Mo 29.10.2007
Autor: thb

Aufgabe
Sei R eine Relation auf einer Menge M, die reflexiv und transitiv ist. Wir definieren eine neue Relation ~ auf M durch m~n [mm] \gdw [/mm] (mRn und nRm) für n,m  [mm] \in [/mm] M.
Zeigen Sie, dass ~ eine Äquivalenzrelation ist.  

Hallo allerseits, ich brauch dringend eure Hilfe.
Kann ich wie folgt argumentieren?:

Zu zeigen ist das die neue Relation reflexiv, symmetrisch und transitiv ist.

die neue Relation ist reflexiv, da mRm und nRn für alle m,n [mm] \in [/mm] M, weil ja in R die Diagonalen emthalten ist, d.h. sie reflexiv ist.

die neue Relation ist symmetrisch, da ja per Definition mRn und nRm für alle n,m [mm] \in [/mm] M ist.

die neue Relation ist transitiv, wenn aus mRn und nRm folgt dass mRm. Letzteres ist aufgrund der Reflexivität gegeben.

Ist das so passabel???
Schöne Grüße.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Relation: Antwort
Status: (Antwort) fertig Status 
Datum: 11:05 Di 30.10.2007
Autor: koepper

Hallo,

diese Aufgabe hatten wir kürzlich schon.

Schau mal in diesen Thread.

Gruß
Will

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]