www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Rekursive Folgen
Rekursive Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rekursive Folgen: Folgenglieder
Status: (Frage) beantwortet Status 
Datum: 10:57 Do 18.11.2010
Autor: dani_123

Aufgabe
[mm] an+1=\bruch{an}{n} [/mm]
Start:= 15

Hey liebe Leute,

scheitere an der kleinsten Aufgabe! Soll hier die Folgenglieder aufschreiben! Meine Mitschrift hat stehen:
an=( [mm] 15,15,\bruch{15}{2},\bruch{15}{32},\bruch{15}{4.3.2}, [/mm] .... [mm] \bruch{15}{(k-1)},...) [/mm]

Könnte mir jemand sagen wie ich genau auf diese Glieder kommen. Ich weiß, dass man das Folgenglied a2 immer nur mithilfe des Ersten also a1 berechnen kann!

Danke

        
Bezug
Rekursive Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:04 Do 18.11.2010
Autor: schachuzipus

Hallo dany_123,

> [mm]an+1=\bruch{an}{n}[/mm]

Autsch, bitte etwas sorgfältiger aufschreiben!

Indizes mache mit dem Unterstrich _

Alles, was länger als 1 Zeichen im Index steht, setze in geschweifte Klammern)

> Start:= 15
> Hey liebe Leute,
>
> scheitere an der kleinsten Aufgabe! Soll hier die
> Folgenglieder aufschreiben! Meine Mitschrift hat stehen:
> an=( [mm]15,15,\bruch{15}{2},\bruch{15}{32},\bruch{15}{4.3.2},[/mm] .... [mm]\bruch{15}{(k-1)},...)[/mm]
>
> Könnte mir jemand sagen wie ich genau auf diese Glieder
> kommen. Ich weiß, dass man das Folgenglied a2 immer nur
> mithilfe des Ersten also a1 berechnen kann!

Du kannst jedes Folgenglied mithilfe des direkt vorangegangenen Folgengliedes bestimmen.

Start:15 bedeutet [mm]a_1=15[/mm]

Damit [mm]a_{\red{2}}=a_{\red{1}+1}=\frac{a_{\red{1}}}{\red{1}}=\frac{15}{1}=15[/mm]

Also [mm]a_2=15[/mm]


Damit [mm]a_3=\frac{a_2}{2}=\frac{15}{2}[/mm]

Weiter [mm]a_4=\frac{a_3}{3}=\frac{\frac{15}{2}}{3}=\frac{15}{6}[/mm]

Usw.


Gruß

schachuzipus

>
> Danke


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]