www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Rekursive Folge
Rekursive Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rekursive Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:29 Do 02.02.2017
Autor: Dom_89

Aufgabe
Gegeben ist die rekursive Folge $ [mm] (an)_{n\ge0} [/mm] $ definiert durch:

$ [mm] a_{n+1} [/mm] $ = [mm] \bruch{1}{2}(a_n+2) [/mm]     n=0,1,2,...       [mm] a_0=1 [/mm]

a) Zeige mit vollständiger Induktion, dass [mm] (a_n) [/mm] monoton wachsend ist.

b) Zeige mit vollständiger Induktion, dass [mm] a_n [/mm] < 2 für alle n [mm] \in \IN [/mm] gilt

c) Zeige, dass die Folge konvergiert und bestimme den Grenzwert

Hallo,

hier einmal mein Ansatz für Teil a)

IA: [mm] a_1 [/mm] = [mm] \bruch{1}{2}(a_0+2) [/mm] = [mm] \bruch{3}{2} [/mm] > [mm] a_0 [/mm] (Erfüllt)

IV:  [mm] a_{n+1} \ge a_n [/mm] gilt für ein n [mm] \in \IN [/mm]

IS: z.Z. [mm] a_{n+2} \ge a_{n+1} [/mm]

[mm] a_{n+2} [/mm] = [mm] \bruch{1}{2}(a_{n+1}+2) \ge \bruch{1}{2}(a_n+2) [/mm] = [mm] a_{n+1} [/mm]

Stimmt das bis hier ?
--------------------------------
Nun bin ich mir aber unsicher, wie es genau weitergeht?

Bei einer "normalen" vollständigen Induktion habe ich keine Probleme; hier jedoch irritiert mich die Notation ein wenig.

Könnt ihr mir etwas auf die Sprünge helfen?

Vielen Dank

        
Bezug
Rekursive Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 19:48 Do 02.02.2017
Autor: leduart

Hallo
wenn du mit b) anfängst , und [mm] a_{n+1}>a_n [/mm] in  [mm] 1/2(a_n+2)>a_n 2-a_n/2>0 [/mm] ist es einfacher
sonst die vollständige Induktion auch über >0 machen
Gruß ledum

Bezug
                
Bezug
Rekursive Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:18 Do 02.02.2017
Autor: Dom_89

Hallo leduart,

vielen Dank für die Antwort!

Laut der Lösung soll die Aufgabe mit eben $ [mm] a_{n+2} [/mm] $ = $ [mm] \bruch{1}{2}(a_{n+1}+2) \ge \bruch{1}{2}(a_n+2) [/mm] $ = [mm] a_{n+1} [/mm] abgeschlossen sein und das ist eben, was mich so stark irritiert.

Kann das denn so sein ?



Bezug
                        
Bezug
Rekursive Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 20:24 Do 02.02.2017
Autor: leduart

Hallo
du hast recht, da wir doch im letzen >= nur die vors [mm] a_{n+1}>a_n [/mm] benutzt, ich hatte das übersehen.
Gruß leduart

Bezug
                        
Bezug
Rekursive Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 06:13 Fr 03.02.2017
Autor: fred97


> Hallo leduart,
>  
> vielen Dank für die Antwort!
>  
> Laut der Lösung soll die Aufgabe mit eben [mm]a_{n+2}[/mm] =
> [mm]\bruch{1}{2}(a_{n+1}+2) \ge \bruch{1}{2}(a_n+2)[/mm] = [mm]a_{n+1}[/mm]
> abgeschlossen sein und das ist eben, was mich so stark
> irritiert.

Ich verstehe Deine Irritation überhaupt nicht.

Es ist doch alles bestens-

>  
> Kann das denn so sein ?
>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]