www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Rekursion
Rekursion < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rekursion: Lineare inhomogene Rekursion
Status: (Frage) überfällig Status 
Datum: 22:56 Do 08.02.2018
Autor: sancho1980

Zitat:

"Die allgemeine Lösung der Rekursion mit c ∈ R

[mm] a_n [/mm] = c [mm] a_{n−1} [/mm] + [mm] g_n [/mm]

hat die Form

[mm] a_n [/mm] = k [mm] c^n [/mm] + [mm] i_n [/mm] , k ∈ R,

wobei [mm] i_n [/mm] irgendeine spezielle Lösung der gegebenen Rekursion ist."

Die darauffolgende Erklärung, warum das so ist, verstehe ich soweit. Jetzt geht's weiter:

Eine spezielle Lösung [mm] i_n [/mm] der gegebenen inhomogenen Rekursion lässt sich oft erraten
oder durch einen geschickten Ansatz ermitteln. Ist [mm] g_n [/mm] = [mm] g_{1,n} [/mm] + [mm] g_{2,n} [/mm] , so kann für
jeden Anteil [mm] g_{j,n} [/mm] eine zugehörige spezielle Lösung [mm] i_{j,n} [/mm] ermittelt werden, und damit
gilt dann [mm] i_n [/mm] = [mm] i_{1,n} [/mm] + [mm] i_{2,n} [/mm] . Hat der inhomogene Anteil die Form [mm] g_n [/mm] = [mm] p(n)b^n [/mm] mit
einem Polynom p(n), so kann man [mm] i_n [/mm] = [mm] q(n)b^n [/mm] ansetzen; dabei hat das Polynom q(n)
gleichen Grad wie p(n), falls b [mm] \not= [/mm] c, und um eins höheren Grad, falls b = c. Beispiel:
Eine spezielle Lösung von [mm] a_n [/mm] = c  [mm] a_{n - 1} [/mm] + [mm] n^2 [/mm] + 3 (hier ist p(n) = [mm] n^2 [/mm] + 3 und b = 1) kann mit dem Ansatz [mm] i_n [/mm] = [mm] q_2 n^2 [/mm] + [mm] q_1 [/mm] n + [mm] q_0 [/mm] , falls c [mm] \not= [/mm] 1, bzw. [mm] i_n [/mm] = [mm] q_3 n^3 [/mm] + [mm] q_2 n^2 [/mm] + [mm] q_1 [/mm] n + [mm] q_0 [/mm] , falls c = 1, gefunden werden."

Kann mir bitte mal einer erklären, was es mit dem Grad der Polynome auf sich hat? Wieso kann ich bei b [mm] \not= [/mm] c schlussfolgern, dass der Grad von q(n) gleich dem Grad von p(n), und warum ist er um genau 1 höher, wenn b = c?

Gruß und Danke

        
Bezug
Rekursion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Sa 10.02.2018
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]