www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algorithmen und Datenstrukturen" - Rekurrenz
Rekurrenz < Algor.+Datenstr. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rekurrenz: Generierendenfunktionen
Status: (Frage) beantwortet Status 
Datum: 02:04 Mo 05.06.2006
Autor: ritta

Aufgabe
  Lösen Sie diese Rekurrenz mittels der Methode der erzeugenden Funktion.
f(0)=1
f(1)=1
f(n)=4.f(n-2)

Hallo Gemeide,
Kann jemand mir das Prinzip der Methode der erzeugenden Funktion erklären.Ich möchte eine Aufgabe dieser Art lösen,aber mir ist es nicht klar,wie man diese Summe benutzt.

mfg

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt




        
Bezug
Rekurrenz: Antwort
Status: (Antwort) fertig Status 
Datum: 08:29 Di 13.06.2006
Autor: mathiash

Hallo und guten Morgen,

leider recht spät, aber hier etwas zur Frage:

Du fasst die Folgenwerte [mm] f_n [/mm] mit [mm] f_0=f_1=1, f_n=4\cdot f_{n-2}\: (n\geq [/mm] 2)

als Koeffizienten einer formalen Potenzreihe

[mm] f(x):=\sum_nf_n\cdot x^n [/mm]

auf, bildest die formale Ableitung

[mm] f'(x)=\sum_{n\geq 1} f_n\cdot n\cdot x^{n-1}, [/mm]

und wenn Du die Ableitung noch auf eine andere Art berechnen kannst, so
kannst Du über Koeffizientenvergleich zweier Potenzreihen die Rekurrenz lösen.

Ich schreib später noch was dazu, bin leider gerade etwas anderweitig eingebunden.

Gruss,

Mathias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]