www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Derive" - Rekonstruktion einer e-Funk.
Rekonstruktion einer e-Funk. < Derive < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Derive"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rekonstruktion einer e-Funk.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:54 Sa 23.06.2007
Autor: Calahad

Aufgabe
Ein mineralisches Substrat wird mit Pflanzenerde gemischt, um den Ertrag in Gewächshäusern zu maximieren. Subtratzahl 2 bedeutet 20% Substrat und 80% Erde. Erprobungen sind kostenintensiv. Die Gewächshausbesitzer möchten mit wenigen Daten den Zusammenhang ziwschen Substratzahl und Ertrag möglichst gut modellieren.
Eine Erprobung in drei Gewächshäusern liefert folgende Tabelle (ME = Mengeneinheiten)

Substratzahl x             2                     5                    8
Ertrag y in ME             1                     4                    1

Für Modellierungen eignen sich Exponentialfunktionen h der Form

[mm] y=h(x)=a*e^{bx+cx^{2}} [/mm]       mit x,a,b,c Element reelle Zahlen, a>0, c<0.

Rekonstruieren Sie anhand der gegebenen Daten die zugehörende Exponetialfunktion.

Ich definiere in Derive 6.10 zuerst die Funktion f(x,a,b,c) nach obigen Schema. Anschließend rufe ich den Menüpunkt Lösen ... System auf und sage 3 Gleichungen.
Dort gebe ich die Gleichungen:
f(1,a,b,c)=1
f(5,a,b,c)=4
f(8,a,b,c)=1
ein.
Ich sage dann Löse nach a,b,c auf und er liefert mir die nichstsagende Mitteilung:

[mm] [a*e^{8*b}*(6.235149080*10^{27})^{c}=1 [/mm] und [mm] a*e^{5*b}*(7.200489933*10^{10})^{c}=4 [/mm] und [mm] a*e^{2*b+4*c}=1] [/mm]

Auch die Eingabe mit Hilfe von Solve(...) oder die direkte Eingabe der drei Gleichungen ohne eine Funktion zu definieren führen nur auf dieses  Ergebnis.

Wie löse ich dieses Gleichungssystem richtig?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Rekonstruktion einer e-Funk.: Antwort
Status: (Antwort) fertig Status 
Datum: 12:57 Sa 23.06.2007
Autor: Event_Horizon

Hallo!

Wenn du dir die Lösung genau anschaust, stellst du fest, daß Derive eigentlich gar nix gemacht hat, außer die Terme ein klein wenig umzuschreiben. Anscheinend ist Derive nicht intelligent genug für diese Aufgabe.

Vielleicht mußt du etwas nachhelfen:

Bilde den ln von den y-Werten und auch von der Formel. Letztere ist dann [mm] $\ln(a)+bx+cx^2=A+bx+cx^2$. [/mm] Damit ist das ganze nur noch eine quadratische Gleichung! Wenn Derive das lösen kann, mußt du nur noch a berechnen.

Derive sagt mir jedenfalls:


       4·LN(2)         3·LN(2)           LN(2)
A = - —————————  b = —————————  c = - ———————
         3               2                6  

Bezug
                
Bezug
Rekonstruktion einer e-Funk.: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 17:00 Sa 23.06.2007
Autor: Stefan-auchLotti


> Hallo!
>  
> Wenn du dir die Lösung genau anschaust, stellst du fest,
> daß Derive eigentlich gar nix gemacht hat, außer die Terme
> ein klein wenig umzuschreiben. Anscheinend ist Derive nicht
> intelligent genug für diese Aufgabe.
>  
> Vielleicht mußt du etwas nachhelfen:
>  
> Bilde den ln von den y-Werten und auch von der Formel.
> Letztere ist dann [mm]\ln(a)+bx+cx^2=A+bx+cx^2[/mm]. Damit ist das
> ganze nur noch eine quadratische Gleichung! Wenn Derive das
> lösen kann, mußt du nur noch a berechnen.
>  
> Derive sagt mir jedenfalls:
>  
>
> 4·LN(2)         3·LN(2)           LN(2)
> A = - —————————  b = —————————  c = - ———————
>           3               2                6    

Hi,

das kann ich nicht richtig nachvollziehen:

Bei meinem Derive 6 kommt auch nichts raus - habe dieselben Gleichungen da stehen.

Wenn man die drei Gleichungen jetzt mal etwas umformt:

[mm] $$a*e^{8b+64c}=1\qquad\gdw\qquad \ln [/mm] a+8b+64c=0$$

[mm] $$a*e^{5b+25c}=4\qquad\gdw\qquad\ln a+5b+25c=\ln [/mm] 4$$

[mm] $$a*e^{2b+4c}=1\qquad\gdw\qquad\ln [/mm] a+2b+4c=0$$

dann macht Derive es.

Und die Lösungen sind dann:

[mm] $$a=\bruch{\wurzel[9]{2^4}}{16}\quad\wedge\quad b=\bruch{20*\ln 2}{9}\quad\wedge\quad c=-\bruch{2*\ln 2}{9}$$ [/mm]

Grüße, Stefan.

Bezug
                
Bezug
Rekonstruktion einer e-Funk.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:40 So 24.06.2007
Autor: Calahad

Ich bedanke mich für die beiden Antworten. Haben beide weitergeholfen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Derive"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]