www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Elektrotechnik" - Reihenresonanzfrequenz
Reihenresonanzfrequenz < Elektrotechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihenresonanzfrequenz: Hilfe bei Aufgabenstellung
Status: (Frage) beantwortet Status 
Datum: 14:41 Sa 19.04.2008
Autor: aciddemon

Aufgabe
Gegeben ist die nachfolgende Schaltung. Bestimmen sie die Reihenresonanzfrequenz

http://img241.imageshack.us/my.php?image=p4192857uh5.jpg

Hallo,

momentan verzweifeln ich und meine Kollegen aus der Lerngruppe ein wenig an dieser Aufgabe.

Der Lösungsweg im Kurzdurchlauf sollte doch sein:
- Aufstellen von Z_gesamt
- Konjugiert komplex erweitern
- Auftrennen von Real und Imaginärteil
- Imaginärteil 0 setzen und nach omega umstellen

Aufstellen von Z_gesamt:

Z= jwl + [mm] \frac{1}{\frac{1}{jwc}+\frac{1}{R}} [/mm]

Konjugiert komplex erweitert:

Z= jwl + [mm] \frac {\frac{1}{R}-jwl}{\frac{1}{R}^2+(wc)^2} [/mm]

Auftrennen von Real und Imaginärteil:

Re = [mm] \frac {\frac{1}{R}}{\frac{1}{R}^2+(wc)^2} [/mm]
Img = jwl - [mm] \frac{jwc}{\frac{1}{R}^2+(wc)^2} [/mm]

Imaginärteil null setzen:

0 = jwl - [mm] \frac{jwc}{\frac{1}{R}^2+(wc)^2} [/mm]
=-jwc + jwl * [mm] (\frac{1}{R}^2+(wc)^2) [/mm]
=jwc + [mm] \frac{jwl}{R^2}+jwl*(wc)^2 [/mm]

Und irgendwie setzt hier die Hilflosigkeit ein. Evtl. kann mir ja jemand auf die Sprünge helfen.  

Gruß
Claas

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Reihenresonanzfrequenz: Antwort
Status: (Antwort) fertig Status 
Datum: 14:28 So 20.04.2008
Autor: rainerS

Hallo Claas!

Erstmal herzlich [willkommenvh]

> Gegeben ist die nachfolgende Schaltung. Bestimmen sie die
> Reihenresonanzfrequenz
>  []http://img241.imageshack.us/my.php?image=p4192857uh5.jpg
>  
> Hallo,
>
> momentan verzweifeln ich und meine Kollegen aus der
> Lerngruppe ein wenig an dieser Aufgabe.
>
> Der Lösungsweg im Kurzdurchlauf sollte doch sein:
>  - Aufstellen von Z_gesamt
>  - Konjugiert komplex erweitern
>  - Auftrennen von Real und Imaginärteil
>  - Imaginärteil 0 setzen und nach omega umstellen
>  
> Aufstellen von Z_gesamt:
>  
> Z= jwl + [mm]\frac{1}{\frac{1}{jwc}+\frac{1}{R}}[/mm]

[notok]

[mm] Z = j\omega L + \frac{1}{j\omega C+\frac{1}{R}}[/mm]

> Konjugiert komplex erweitert:
>  
> Z= jwl + [mm]\frac {\frac{1}{R}-jwl}{\frac{1}{R}^2+(wc)^2}[/mm]

[notok]

Wieso wird aus dem [mm] $j\omega [/mm] C$ im Nenner ein [mm] $j\omega [/mm] L$ im Zähler?

[mm] \frac{1}{j\omega C+\frac{1}{R}} = \frac{\frac{1}{R}-j\omega C}{\left(\frac{1}{R}\right)^2+ \left(\omega C}\right)^2} [/mm]


>  
> Auftrennen von Real und Imaginärteil:
>  
> Re = [mm]\frac {\frac{1}{R}}{\frac{1}{R}^2+(wc)^2}[/mm]
>  Img = jwl - [mm]\frac{jwc}{\frac{1}{R}^2+(wc)^2}[/mm]

Jetzt stimmt's wieder.

>  
> Imaginärteil null setzen:
>  
> 0 = jwl - [mm]\frac{jwc}{\frac{1}{R}^2+(wc)^2}[/mm]
>  =-jwc + jwl * [mm](\frac{1}{R}^2+(wc)^2)[/mm]
>  =jwc + [mm]\frac{jwl}{R^2}+jwl*(wc)^2[/mm]

Schlampig geschrieben. Die 2. Gleichung ist zwar 0, aber nicht gleich der ersten, denn du hast mit dem Nenner multipliziert.

>  =jwc + [mm]\frac{jwl}{R^2}+jwl*(wc)^2[/mm]

Und hier ist plötzlich ein Minuszeichen verschwunden.


> Und irgendwie setzt hier die Hilflosigkeit ein. Evtl. kann
> mir ja jemand auf die Sprünge helfen.  

Die Gleichung ist doch ganz einfach zu lösen:

[mm] -j\omega C + j\omega L \frac{1}{\frac{1}{R^2}+(\omega C)^2} = 0 [/mm]

[mm] $\omega$ [/mm] kann man ausklammern, also ist [mm] $\omega=0$ [/mm] eine Lösung. Jetzt suchen wir nach weiteren Lösungen; da wir nur am Fall [mm] $\omega\not=0$ [/mm] interessiert sind, können wir [mm] durch($J\omega$ [/mm] dividieren:

[mm] -C + L \frac{1}{\frac{1}{R^2}+(\omega C)^2} = 0 \gdw \bruch{L}{C} = \frac{1}{R^2}+(\omega C)^2 [/mm]

Jetzt musst du nur noch beachten, dass diese Gleichung nicht für alle möglichen Werte von L,C,R Lösungen hat.

Viele Grüße
   Rainer



Bezug
        
Bezug
Reihenresonanzfrequenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:58 So 20.04.2008
Autor: aciddemon

Guten Abend Rainer,

Dank an Dich für deine Antwort und entschuldige meine Schlampigkeit beim Abschreiben der Rechnung. Dies war evtl. auch einer der Gründe, warum ich so durcheinander kam. C und L sollte man besser nicht verwechseln.

Ich weiß nun aber, wie die Aufgabe zu lösen ist.

Gruß
Claas

Nachtrag: Eigentlich sollte es keine Frage werden, sondern lediglich eine Mitteilung aber gut. Verwirrendes System.




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]