www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Reihen Konvergenz, partial.Sum
Reihen Konvergenz, partial.Sum < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihen Konvergenz, partial.Sum: tipp,Rückfrage,Korrektur
Status: (Frage) beantwortet Status 
Datum: 11:51 Sa 07.05.2022
Autor: segelspringer

Aufgabe
Hallo,

da ich neu hier bin , ist mir die Codierung mit Latex noch nicht so geläufig und in der Aufgabenstellung sind eine schwierige Zeichen drin.
Deshalb habe ich hier ein Bild der Aufgabenstellung hochgeladen
[Dateianhang nicht öffentlich]

Ich habe mich nur mit dem Aufgabenteil a) beschäftigt.

dort wollte ich das Cauchy Kriterium verwenden, aber ich weis nicht genau, wie ich  es auf die Aufhabe anwende sollen.
Hier ist das Kriterium selbst $ [mm] \forall \epsilon >0\,\exists N\in \mathbb [/mm] {N} [mm] \,\forall n\geq m\geq N:\left|\sum _{k=m}^{n}a_{k}\right|<\epsilon [/mm] $

Sage ich jetzt [mm] $|s_m|:= |\sum_{n=1}^{m} a_n| [/mm] < [mm] \epsilon$ [/mm] und bin fertig?

Danke für eure Hilfe und Input!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: PNG) [nicht öffentlich]
        
Bezug
Reihen Konvergenz, partial.Sum: Antwort
Status: (Antwort) fertig Status 
Datum: 13:39 Sa 07.05.2022
Autor: Gonozal_IX

Hiho,

> da ich neu hier bin , ist mir die Codierung mit Latex noch
> nicht so geläufig und in der Aufgabenstellung sind eine
> schwierige Zeichen drin.

wie wäre es mal mit üben und versuchen? Scheint ein grundsätzliches Problem bei dir zu sein…

> dort wollte ich das Cauchy Kriterium verwenden, aber ich
> weis nicht genau, wie ich  es auf die Aufhabe anwende
> sollen.
>  Hier ist das Kriterium selbst [mm]\forall \epsilon >0\,\exists N\in \mathbb {N} \,\forall n\geq m\geq N:\left|\sum _{k=m}^{n}a_{k}\right|<\epsilon[/mm]

> Sage ich jetzt [mm]|s_m|:= |\sum_{n=1}^{m} a_n| < \epsilon[/mm] und
> bin fertig?

Dann kannst du sagen, allerdings ist das weder noch korrekt, noch bist du dann fertig.

1.) Du sollst keine Aussage über die Reihe [mm] $\sum_{n=1}^\infty a_n$ [/mm] treffen, sondern über [mm] $\sum_{n=1}^\infty a_nf_n$ [/mm]

2.) Die Reihe [mm] $\sum_{n=1}^\infty a_n$ [/mm] konvergiert im Allgemeinen gar nicht, demzufolge gilt [mm]|s_m|:= |\sum_{n=1}^{m} a_n| < \epsilon[/mm] sowieso nicht und wäre auch nicht das Cauchy-Kriterium angewand auf obige Reihe.

3.) Wie wäre es mal damit den Hinweis zu verwenden?

Heißt zusammengefasst:
i) Formuliere das Cauchy-Kriterium korrekt für die Reihe  [mm] $\sum_{n=1}^\infty a_nf_n$ [/mm]

ii) Zeige i) mit Hilfe des Hinweises. Nutze zusätzlich die Dreiecksungleichung und die gegebenen Voraussetzungen.

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]