www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Reihen
Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihen: Tipp
Status: (Frage) beantwortet Status 
Datum: 15:40 Mi 07.11.2007
Autor: Mike_1988



Es wäre super wenn mir jemand eine Idee geben könnte.

Danke im Voraus
Michael

PS.: Es kommt in keinem anderen forum vor.

        
Bezug
Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:00 Do 08.11.2007
Autor: schachuzipus

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo Michael,

ich würde deine Potenzreihe zunächst ein wenig umschreiben, so dass sie die "Standardform" einer Potenzreihe hat:

$\sum\limits_{n=1}^{\infty} \pmat{2n \\ n}\cdot{}(x^2-1)^{2n}=\sum\limits_{n=1}^{\infty} \underbrace{\pmat{2n \\ n}}_{:=a_n}\cdot{}\left(\underbrace{(x^2-1)^{2}}_{:=z}\right)^n}$

Nun berechne $R=\lim\limits_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|$

Dann ist der Konvergenzradius der Potenzreihe $r=\frac{1}{R}$ und die Reihe konvergiert für $|z|<r$ und divergiert für $|z|>r$


Also $\lim\limits_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\lim\limits_{n\to\infty}\left|\frac{\pmat{2(n+1)\\n+1}}{\pmat{2n\\n}}\right|=\lim\limits_{n\to\infty}\left|\frac{\pmat{2n+2\\n+1}}{\pmat{2n\\n}}\right|$

Nun die Definition von $\pmat{n\\k}$ benutzen...

Die Beträge kannste auch weglassen, ist ja alles positiv

$=\lim\limits_{n\to\infty}\left(\frac{(2n+2)(2n+1)\cdot{}2n\cdot{}(2n-1)\cdot{}.....\cdot{}(n+3)(n+2)}{(n+1)!}\cdot{}\frac{n!}{2n(2n-1)\cdot{}.....\cdot{}(n+3)(n+2)(n+1)}\right)$

Ich habe direkt mit dem Kehrbruch multipliziert....

Nun ausgiebig kürzen. Dabei bedenke: $(n+1)!=n!(n+1)$

$=\lim\limits_{n\to\infty}\frac{(2n+2)(2n+1)}{(n+1)^2}=\lim\limits_{n\to\infty}\frac{2(2n+1)}{n+1}=4=R$

Also Konvergenzradius $r=\frac{1}{R}=\frac{1}{4}$

Also konvergiert die Reihe für $|z|<\frac{1}{4}$

Also für $(x^2-1)^2<\frac{1}{4}$

Die in Frage kommenden $x$ kannst du nun selber berechnen ;-)

Hoffe, ich hab mich nirgends verrechnet oder verschrieben


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]