www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Reihen
Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihen: Konvergenz
Status: (Frage) überfällig Status 
Datum: 17:10 Mo 15.01.2007
Autor: KaiTracid

Aufgabe
Untersuchen sie jeweils die Reihe auf Konvergenz:

1) [mm] a_{k}=\begin{cases} (-1)^(k/2)*(1/\wurzel{k+1}, & \mbox{für } k \mbox{ gerade} \\ (\wurzel{k+1-\wurzel{k})^4}, & \mbox{für } k \mbox{ ungerade} \end{cases} [/mm]

[mm] 2)1/(k^2+1) [/mm] , k ungerade
    [mm] 2^k^2/5^{k+1} [/mm] , k gerade

aso bei 1) ist eine alternierende Reihe.
konvergent, da 1/ [mm] \wurzel{k+1} [/mm] monoton fallend ist, also lim -> 0 ist
--->alternierende Reihe, monoton fallend und nullfolge---> konvergent

für k ungerade: monoton fallend, Nullfolge mit lim -> 0 --->konvergent!

ist dies soweit richtig? oder geht dies anders?! mach ich bei 2) da gleiche?

Danke

        
Bezug
Reihen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 23:13 Mo 15.01.2007
Autor: KaiTracid

Ich habs jetzt nochhmals versucht die ergebnisse raus zu bekommen! bei der ersten Reihe bin ich immer noch bei dem gleichen wie oben schon geschrieben!

zu der 2. hab ich:

für k ungerade geht diese Reihe konvergent, da lim = 0 ist!
für k gerade hab ich raus, dass die Folge divergent ist, und zwar hab ich einfach mal ein paar folgengleieder ausgerechnet die immer größer werden für n --> unendlich!

stimmen dieses sachen?

Vielen Dank!

Bezug
                
Bezug
Reihen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Mi 17.01.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]