www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Reihen
Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:12 Di 27.06.2006
Autor: WasWeissIch

Aufgabe
Wandeln sie die folgenden periodischen b-adischen Brüche in gewöhnliche Brüche ( [mm] \bruch{p}{q} [/mm] mit p,q [mm] \in \IN) [/mm] um, wobei Sie als Darstellungsbasis a) b=10 bzw. b) b=7 wählen:
(i) 0, [mm] \overline{6} [/mm]

Ich weiß, wie man Dezimalbrüche in b-adische Brüche umwandelt, aber ich habe keine Idee, wie das in die andere Richtung gehen soll...

Ich weiß, dass 0, [mm] \overline{6}= \summe_{i=1}^{\infty} \bruch{6}{ 10^{i}} [/mm] für die Basis 10 und
0, [mm] \overline{6}= \summe_{i=1}^{\infty} \bruch{6}{ 7^{i}} [/mm] für die Basis 7 ist.
Hilft mir das irgendwie weiter???

Lieben Gruß

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Reihen: Die Antwort ist ...
Status: (Antwort) fertig Status 
Datum: 13:25 Di 27.06.2006
Autor: statler

Hallo WasWeißIch, [willkommenmr]

> Wandeln sie die folgenden periodischen b-adischen Brüche in
> gewöhnliche Brüche ( [mm]\bruch{p}{q}[/mm] mit p,q [mm]\in \IN)[/mm] um,
> wobei Sie als Darstellungsbasis a) b=10 bzw. b) b=7
> wählen:
>  (i) 0, [mm]\overline{6}[/mm]
>   Ich weiß, wie man Dezimalbrüche in b-adische Brüche
> umwandelt, aber ich habe keine Idee, wie das in die andere
> Richtung gehen soll...
>
> Ich weiß, dass 0, [mm]\overline{6}= \summe_{i=1}^{\infty} \bruch{6}{ 10^{i}}[/mm]
> für die Basis 10 und
>   0, [mm]\overline{6}= \summe_{i=1}^{\infty} \bruch{6}{ 7^{i}}[/mm]
> für die Basis 7 ist.
>  Hilft mir das irgendwie weiter???

Ja! Was da jetzt steht, ist eine geometrische Reihe, dafür gibt es eine Formel zur Berechnung, die du vielleicht sogar kennst.

Gruß aus HH-Harburg
Dieter


Bezug
                
Bezug
Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:40 Mi 28.06.2006
Autor: WasWeissIch

Ja gut, aber was habe ich davon, wenn ich die Reihe berechnet habe? Ich soll doch den b-adischen Bruch in einen Dezimalbruch (bzw. eben zur Basis 7) umwandeln.
Was bringt mir dann also das normale Berechnen der Reihe?

Bezug
                        
Bezug
Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:51 Mi 28.06.2006
Autor: WasWeissIch

Oh mein Gott, wer hat denn da alles auf meinem Schlauch gestanden...

Ja, ist ja ne recht einfache Nummer gewesen, wenn man sich nicht verwirren lässt.

Zur Basis 10:

[mm] \summe_{i=1}^{\infty} \bruch{1}{ 10^{i}} [/mm] = 6( [mm] \bruch{1}{1- \bruch{1}{10}}-1)= \bruch{2}{3} [/mm]

Zur Basis 7:

[mm] \summe_{i=1}^{\infty} \bruch{1}{ 7^{i}} [/mm] = 6( [mm] \bruch{1}{1- \bruch{1}{7}}-1)= [/mm] 1

Stimmt doch oder?



Bezug
                                
Bezug
Reihen: exactemang
Status: (Antwort) fertig Status 
Datum: 16:11 Mi 28.06.2006
Autor: statler


> Oh mein Gott, wer hat denn da alles auf meinem Schlauch
> gestanden...

Ich jedenfalls nicht

> Ja, ist ja ne recht einfache Nummer gewesen, wenn man sich
> nicht verwirren lässt.
>  
> Zur Basis 10:
>  
> [mm]\summe_{i=1}^{\infty} \bruch{1}{ 10^{i}}[/mm] = 6( [mm]\bruch{1}{1- \bruch{1}{10}}-1)= \bruch{2}{3}[/mm]
>  
> Zur Basis 7:
>  
> [mm]\summe_{i=1}^{\infty} \bruch{1}{ 7^{i}}[/mm] = 6( [mm]\bruch{1}{1- \bruch{1}{7}}-1)=[/mm]
> 1
>  
> Stimmt doch oder?

So isset!
Dieter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]