www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Reihe
Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:50 Sa 19.06.2010
Autor: rml_

Aufgabe
[mm] \summe_{n=0}^{\infty} \begin{pmatrix} 2n \\ n \end{pmatrix} x_n [/mm]

gesucht ist der konvergenzradius

hallo, also ich hab ein problem mit der musterlösung dieser aufgabe :
also er benutzt das Quotientenkriterium und nach ausmultiepliezieren macht er folgendes:

[mm] \limes_{n \to \infty} \bruch{2n! * (n+1)! + (n+1)!}{(2n+2)! * n! * n!} [/mm]

und jetzt kommt das was ich nicht verstehe

[mm] =>\limes_{n \to \infty} \bruch{(n+1)^2}{(2n+1) *(2n+2)} [/mm]

kann mir das kurz jemand erklären?

danke

        
Bezug
Reihe: Eigenschaften Fakultät
Status: (Antwort) fertig Status 
Datum: 12:59 Sa 19.06.2010
Autor: Loddar

Hallo rml!


> [mm]\limes_{n \to \infty} \bruch{2n! * (n+1)! + (n+1)!}{(2n+2)! * n! * n!}[/mm]

Das Pluszeichen im Zähler ist falsch. Dort gehört ein Malpunkt hin.

  

> und jetzt kommt das was ich nicht verstehe
> [mm]=>\limes_{n \to \infty} \bruch{(n+1)^2}{(2n+1) *(2n+2)}[/mm]

Verwende die Definition und Eigenschaften der Fakultät. Es gilt:
$$(n+1)! \ = \ n!*(n+1)$$
$$(2n+2)! \ = \ (2n)!*(2n+1)*(2n+2)$$

Gruß
Loddar


Bezug
                
Bezug
Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:09 Sa 19.06.2010
Autor: rml_

dankeschön , jetzt ergibt das sinn:)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]