www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Interpolation und Approximation" - Regressionsgerade genauer?
Regressionsgerade genauer? < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Regressionsgerade genauer?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:54 Sa 14.02.2015
Autor: Magehex

Hi,

gegeben sind n verschiedene Stützstellen. Ich will einen y-Wert bestimmen, auf welchem kein Punkt (Stützstelle) liegt, d.h. mein x-Wert ist bekannt. Ich lege also Regressionsgerade durch und kann somit meinen y-Wert ermitteln. Soweit richtig?

Was wenn ich so vorgehe. Ich bilde den Mittelwert über alle Stützstellen. Sehe welche x-Werte meinem gesuchten x-Wert am nähesten kommen und lege durch diese 2 Punkte eine Gerade durch. Dann kann ich durch diese Gerade meinen y-Wert ermitteln.


Meine Frage: Im Grunde sind doch beides Annäherungen. Aber sind die wirklich gleich, oder ist eine Regressionsgerade, also die Methode der kleinsten Quadrate z.B. genauer, sprich sie liefert eine bessere Approximation?

Danke

        
Bezug
Regressionsgerade genauer?: Antwort
Status: (Antwort) fertig Status 
Datum: 18:35 Sa 14.02.2015
Autor: Al-Chwarizmi


> Hi,
>
> gegeben sind n verschiedene Stützstellen.   [haee]

Ich vermute sehr, dass nicht nur die n Stützstellen [mm] x_i [/mm]
(mit i von 1 bis n) gegeben sind, sondern auch die
zugehörigen Werte [mm] y_i [/mm] .
Damit hast du als Ausgangsmaterial nicht nur Stütz-
Stellen, sondern Stütz-Punkte.

> Ich will einen
> y-Wert bestimmen, auf welchem kein Punkt (Stützstelle)
> liegt, d.h. mein x-Wert ist bekannt. Ich lege also
> Regressionsgerade durch und kann somit meinen y-Wert
> ermitteln. Soweit richtig?

Dies ist das richtige Vorgehen, wenn man annehmen
darf, dass der Zusammenhang zwischen x und y in etwa
linear ist und die einzelnen [mm] y_i [/mm] - Werte mit gewissen
(hoffentlich relativ kleinen) zufälligen Abweichungen
(z.B. Messfehler) nach oben oder unten behaftet sind.


> Was wenn ich so vorgehe. Ich bilde den Mittelwert über
> alle Stützstellen.    [haee]

Ich vermute, dass du auch hier etwas anderes schreibst
als das was du meinst ! Willst du wirklich den (arith-
metischen) Mittelwert

      [mm] $\overline [/mm] x\ =\ [mm] \frac{x_1+x_2+\,......\,+x_n}{n}$ [/mm]

berechnen ??

> Sehe welche x-Werte meinem gesuchten
> x-Wert am nähesten kommen und lege durch diese 2 Punkte
> eine Gerade durch. Dann kann ich durch diese Gerade meinen
> y-Wert ermitteln.

Was du also wirklich meinst: du suchst die dem neuen
x-Wert  am nächsten benachbarten Stützstellen [mm] x_i [/mm] und [mm] x_{i+1} [/mm]
mit  $\ [mm] x_i\ [/mm] <\ x\ <\ [mm] x_{i+1}$ [/mm]  und willst dann eine lineare Interpolation
auf der Grundlage dieser beiden Punkte machen.

Diese zweite Methode ist geeigneter, wenn man mit der
Linearität der Funktion  $\ [mm] x\mapsto [/mm] y$ (global) nicht rechnen
kann und falls die Präzision der einzelnen Messwerte [mm] y_i [/mm]
gut ist.  
  

> Meine Frage: Im Grunde sind doch beides Annäherungen. Aber
> sind die wirklich gleich, oder ist eine Regressionsgerade,
> also die Methode der kleinsten Quadrate z.B. genauer,
> sprich sie liefert eine bessere Approximation?

Ich denke, dass ich diese Frage durch meine zwei
angebotenen Szenarien recht gut beantwortet habe.

LG ,    Al-Chwarizmi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]