www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Regelmäßiges Sechseck
Regelmäßiges Sechseck < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Regelmäßiges Sechseck: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:00 So 01.02.2009
Autor: Mandy_90

Aufgabe
Ein regelmäßiges Sechseck (Seitenlänge 2) liegt symmetrisch zu den Koordinatenachsen. Jeweils drei Ecken liegen auf zwei Parabeln, die symmetrisch zur x-Achse sind. Bestimmen Sie die Gleichungen der Parabeln
und berechnen Sie die Fläche des Gebietes, das innerhalb der Parabeln, aber außerhalb des Sechseckes liegt.

Hallo zusammen^^

Ich hab zu dieser Aufgabe die Lösung aber ich versteh nicht genau wie man drauf kommt.Vielleicht kann mir ja jemand helfen,sie zu verstehen.

[Dateianhang nicht öffentlich]

Lösung:

Die Ecken des Sechsecks haben die Koordinaten [mm] (0/\pm2) [/mm] und [mm] (\pm\wurzel{3}/\pm1). [/mm]
Die Parabeln haben die Form [mm] y=ax^{2}+b.Da [/mm] die Ecken auf den Parablen liegen,gilt [mm] y=-\bruch{1}{3}x^{2}+2 [/mm] und [mm] y=\bruch{1}{3}x^{2}-2. [/mm]

Ich versteh nicht woher man weiß,dass die y-Koordinate bei 0 2 beträgt.
Die Seitenlängen sind zwar 2,aber wie hat man hier die 2 berechnet?
Und wie man auf die x-Koordinate [mm] \wurzel{3} [/mm] kommt,versteh ich leider auch nicht.
Und bei den Parabelansatzgleichungen haben die [mm] y=ax^{2}+b [/mm] genommen,ich hätte hier aber die allgemeine Gleichung [mm] y=ax^{2}+bx+c [/mm] genommen,wie kommt man dann auf die hier angegebene Gleichung?

Vielen dank für eure Hilfe

lg

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Regelmäßiges Sechseck: falsche Skizze
Status: (Antwort) fertig Status 
Datum: 17:07 So 01.02.2009
Autor: Al-Chwarizmi


Hallo Mandy,  deine Skizze ist so nicht richtig.
Jede Parabel soll ja durch drei Ecken des
Sechsecks gehen, und nicht nur durch zwei !

LG

Bezug
                
Bezug
Regelmäßiges Sechseck: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:17 So 01.02.2009
Autor: Mandy_90


>
> Hallo Mandy,  deine Skizze ist so nicht richtig.
>  Jede Parabel soll ja durch drei Ecken des
>  Sechsecks gehen, und nicht nur durch zwei !
>  

Oh natürlich,da war ich wohl ungenau beim Zeichnen,habs grad verbessert.
Die Lösung versteh ich trotzdem nicht ?

lg

Bezug
                        
Bezug
Regelmäßiges Sechseck: Geometrie
Status: (Antwort) fertig Status 
Datum: 17:21 So 01.02.2009
Autor: Loddar

Hallo Mandy!


Du kannst ein []regelmäßiges 6-Eck in 6 gleichseitige Dreiecke zerlgen. Daraus folgt auch der vertikale Abstand [mm] $r_a$ [/mm] vom Mittelpunkt zu äußersten Spitze mit:
[mm] $$r_a [/mm] \ = \ s \ = \ 2$$

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]