www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Regelmäßiges Fünfeck
Regelmäßiges Fünfeck < Sonstiges < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Regelmäßiges Fünfeck: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:01 Fr 28.01.2011
Autor: Mandy_90

Aufgabe
Ziel dieser Aufgabe ist die Konstruktion eines regelmäßigen Fünfecks mit Zirkel und Lineal.
Sei [mm] w_{1}=e^{\bruch{2\pi*i}{5}} [/mm] die primitive Einheitswurzel.

a) Man gebründe (am besten ohne Rechnung), warum [mm] 1+w_{1}+w_{1}^{2}+w_{1}^{3}+w_{1}^{4}=0 [/mm] gilt.

b) Man schreibe eine quadratische Gleichung auf, deren Lösungen genau [mm] \alpha= w_{1}+w_{1}^{4} [/mm] und [mm] \beta=w_{1}^{2}+w_{1}^{3} [/mm] sind und folgere: [mm] cos(\bruch{2*\pi}{5})=\bruch{-1+\wurzel{5}}{4} [/mm] und [mm] cos(\bruch{4*\pi}{5})=\bruch{-1-\wurzel{5}}{4}. [/mm]

Guten Abend,

also die Konstruktion des regelmäßigen Fünfecks kommt noch, dazu muss ich erstmal diese Aufgaben mit komplexen Zahlen lösen, was mir schon schwer fällt.Ich hoffe jemand kann mir helfen.

a) Also wenn ich das richtig verstehe, sind [mm] 1,w_{1},w_{1}^{2},w_{1}^{3},w_{1}^{4} [/mm] die Eckpunkte des Fünfecks, also sind das komplexe Zahlen. So, und wenn ich z.B. den Vektor (1,0) als Auffahrtsvektor nehme und hänge die nächsten 4 Vektoren da dran, wobei die jeweils auf einen Eckpunkt des Fünfecks zeigen, dann bin ich am Ende wieder bei (1,0), habe also den Nullvektor.
Ich glaube,ich habs jetzt nicht so schön ausgedrückt, aber die Idee müsste doch so stimmen oder?

b) Ganz allgemein sieht eine quadratische Gleichung so aus:
[mm] ax^{2}+bx+c=0, [/mm] wobei hier x [mm] \in \IC. [/mm]
Die allgemeinen Lösungen dieser Gleichungen sind
[mm] \alpha=\bruch{-b+\wurzel{b^{2}-4ac}}{2a} [/mm] und

[mm] \beta=\bruch{-b-\wurzel{b^{2}-4ac}}{2a} [/mm] und es muss gelten:

[mm] \alpha=\bruch{-b+\wurzel{b^{2}-4ac}}{2a}=w_{1}+w_{4} [/mm]

[mm] \beta=\bruch{-b-\wurzel{b^{2}-4ac}}{2a}=w_{1}^{2}+w_{1}^{3}. [/mm]

Das Problem ist, dass ich dieses LGS nicht lösen kann, da ich 3 Variablen habe, aber nur zwei Gleichungen.
Ich finde auch keinen Ansatz, wie ich hier vorgehen könnte.
Hat vielleicht jemand einen Tipp für mich?

lg

        
Bezug
Regelmäßiges Fünfeck: Antwort
Status: (Antwort) fertig Status 
Datum: 14:15 Sa 29.01.2011
Autor: abakus


> Ziel dieser Aufgabe ist die Konstruktion eines
> regelmäßigen Fünfecks mit Zirkel und Lineal.
>  Sei [mm]w_{1}=e^{\bruch{2\pi*i}{5}}[/mm] die primitive
> Einheitswurzel.
>  
> a) Man gebründe (am besten ohne Rechnung), warum
> [mm]1+w_{1}+w_{1}^{2}+w_{1}^{3}+w_{1}^{4}=0[/mm] gilt.
>  
> b) Man schreibe eine quadratische Gleichung auf, deren
> Lösungen genau [mm]\alpha= w_{1}+w_{1}^{4}[/mm] und
> [mm]\beta=w_{1}^{2}+w_{1}^{3}[/mm] sind und folgere:
> [mm]cos(\bruch{2*\pi}{5})=\bruch{-1+\wurzel{5}}{4}[/mm] und
> [mm]cos(\bruch{4*\pi}{5})=\bruch{-1-\wurzel{5}}{4}.[/mm]
>  Guten Abend,
>  
> also die Konstruktion des regelmäßigen Fünfecks kommt
> noch, dazu muss ich erstmal diese Aufgaben mit komplexen
> Zahlen lösen, was mir schon schwer fällt.Ich hoffe jemand
> kann mir helfen.
>  
> a) Also wenn ich das richtig verstehe, sind
> [mm]1,w_{1},w_{1}^{2},w_{1}^{3},w_{1}^{4}[/mm] die Eckpunkte des
> Fünfecks, also sind das komplexe Zahlen. So, und wenn ich
> z.B. den Vektor (1,0) als Auffahrtsvektor nehme und hänge
> die nächsten 4 Vektoren da dran, wobei die jeweils auf
> einen Eckpunkt des Fünfecks zeigen, dann bin ich am Ende
> wieder bei (1,0), habe also den Nullvektor.
>  Ich glaube,ich habs jetzt nicht so schön ausgedrückt,
> aber die Idee müsste doch so stimmen oder?
>  
> b) Ganz allgemein sieht eine quadratische Gleichung so aus:
> [mm]ax^{2}+bx+c=0,[/mm] wobei hier x [mm]\in \IC.[/mm]
>  Die allgemeinen
> Lösungen dieser Gleichungen sind
>  [mm]\alpha=\bruch{-b+\wurzel{b^{2}-4ac}}{2a}[/mm] und
>  
> [mm]\beta=\bruch{-b-\wurzel{b^{2}-4ac}}{2a}[/mm] und es muss
> gelten:
>  
> [mm]\alpha=\bruch{-b+\wurzel{b^{2}-4ac}}{2a}=w_{1}+w_{4}[/mm]
>  
> [mm]\beta=\bruch{-b-\wurzel{b^{2}-4ac}}{2a}=w_{1}^{2}+w_{1}^{3}.[/mm]
>  
> Das Problem ist, dass ich dieses LGS nicht lösen kann, da
> ich 3 Variablen habe, aber nur zwei Gleichungen.

Es muss auch eine Gleichung in Normalform (mit a=1) geben, die diese Lösungen hat. Ansatz über Satz des Vieta!

Zu a) Die Struktur des Terms drängt mir die Anwendung der Summenformel für geometrische Reihen geradezu auf ...
Gruß Abakus

>  Ich finde auch keinen Ansatz, wie ich hier vorgehen
> könnte.
>  Hat vielleicht jemand einen Tipp für mich?
>  
> lg


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]