www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Regelm. n-Ecke: Minimalpolynom
Regelm. n-Ecke: Minimalpolynom < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Regelm. n-Ecke: Minimalpolynom: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:23 Mi 06.02.2019
Autor: Tobikall

Aufgabe
Minimalpolynom bei einem 9-Eck mit [mm] z=e^{2(\pi)i/9} [/mm] und Re(z)=x mit [mm] x=cos(2\pi/9), [/mm] bzw. bei einem n-Eck mit geradem n


Hallo liebes Forum,

bezüglich meiner Klausur nächste Woche habe ich noch eine ziemlich dringende Frage bezüglich der Bestimmung von Minimalpolynomen in regelmäßigen n-Ecken.
In den Übungen der letzten Wochen haben wir immer mit einer ganz speziellen Methode (gehe ich gleich weiter drauf ein) die Minimalpolynome eines regelmäßgien 3-, 5-, und 7-Ecks bestimmt und so etwas müssen wir wohl auch in der Klausur können.
Dabei haben wir z.b. am Beispiel des 5-Ecks von [mm] z=e^{2(\pi)i/5} [/mm] den Realteil gleich x gesetzt  und dann ausgehend vom Polynom [mm] X^5-1, [/mm] der z als Nullstelle hat mit geometrischer Reihe eine Nullstelle ausgeklammert und kamen so zu einem Polynom vierten Grades. Dieses konnten wir dann durch betrachten zweier weiterer Nullstellen a=z+z^-1 und [mm] b=z^2+z^-2 [/mm] auf ein Polynome zweiten Grades reduzieren, sodass beim 5-Eck schlussendlich [mm] X^2+X-1 [/mm] als Minimalpolynom herauskam.
Soweit so gut, das habe ich auch alles verstanden.

Nun zu meiner eigentlichen Frage: Da in der Klausur ja wahrscheinlich ein anderes n-Eck drankommen wird, als wir schon hatten, habe ich mir überlegt, dass dies gut ein 9-Eck bzw. evtl auch ein 4-, oder 6-Eck sein könnte.
Wenn ich nun aber das oben beispielhafte Verfahren auf ein 9-Eck mit Realteil [mm] cos(2\pi/9) [/mm] anwende, würde aber ein Polynom vierten Grades mit meiner Rechnung herauskommen, in einem anderen Forum habe ich aber gesehen, dass das Minimalpolynom hier Grad 3 hat?!
Und bei einem n-Eck mit geradem n (also zb 4 oder 6) wüsste ich nicht wie ich mein Verfahren anwenden könnte, da hier der Trick mit den Nullstellen a und b ohne weiteres nicht funktioniert?!

Könnte mir also jemand verraten, wie man das Minimalpolynom in diesen Fällen bestimmt und wie die schlussendlichen Minimalpolynome konkret aussehen. Dazu fällt mir nämlich konkret kein Weg, der ähnlich zum Rechenweg meiner bisherigen Übungsaufgaben passt, ein. Oder kann man das Minimalpolynom bei einem geraden n gar nicht ohne weiteres berechnen?

Vielen Dank

        
Bezug
Regelm. n-Ecke: Minimalpolynom: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Sa 09.02.2019
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]