www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Reduzibel, Nullstelle
Reduzibel, Nullstelle < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reduzibel, Nullstelle: Zerlegung einer Funktion
Status: (Frage) beantwortet Status 
Datum: 21:12 So 08.06.2014
Autor: YuSul

Aufgabe
Gegeben sei [mm] $f\in [/mm] K[T]$ mit $deg [mm] f\in\{2,3\}$. [/mm]
Zeigen Sie: f ist reduzibel genau dann wenn f eine Nullstelle in K hat.

Hi, ist dieser Beweis korrekt?

"Reduzibel [mm] $\Rightarrow$ [/mm]  f hat Nullstelle in K

Sei [mm] $f\in [/mm] K[T]$ mit [mm] $deg\,\, f\in\{2,3\}$ [/mm] reduzibel, dann existiert für

[mm] $f(x)=ax^3+bx^2+cx+d$ [/mm] mit [mm] $a,b,c,d\in [/mm] K$ und [mm] $a\neq 0\vee b\neq [/mm] 0$ (Also ist nicht a und b gleichzeitig Null, sonst wäre ja der Grad nicht 2, oder 3)

eine Zerlegung

[mm] $(a'x^2+b'x+c')(x-d')=f(x)$ [/mm] mit [mm] $a'\neq 0\vee b'\neq [/mm] 0$, mit d' ist Nullstelle von f.

Das war die Hinrichtung. Nun zur Rückrichtung:

"f hat Nullstelle [mm] $\Rightarrow$ [/mm] f ist reduzibel"

Da f eine Nullstelle hat und [mm] $deg\,\, f\in\{2,3\}$ [/mm] hat f mindestens einen linear Faktor.



Passt das so? Die Rückrichtung ist ja ziemlich trivial.

        
Bezug
Reduzibel, Nullstelle: Antwort
Status: (Antwort) fertig Status 
Datum: 07:24 Mo 09.06.2014
Autor: meili

Hallo,

> Gegeben sei [mm]f\in K[T][/mm] mit [mm]deg f\in\{2,3\}[/mm].
> Zeigen Sie: f ist reduzibel genau dann wenn f eine
> Nullstelle in K hat.
>  Hi, ist dieser Beweis korrekt?
>  
> "Reduzibel [mm]\Rightarrow[/mm]  f hat Nullstelle in K
>  
> Sei [mm]f\in K[T][/mm] mit [mm]deg\,\, f\in\{2,3\}[/mm] reduzibel, dann
> existiert für
>
> [mm]f(x)=ax^3+bx^2+cx+d[/mm] mit [mm]a,b,c,d\in K[/mm] und [mm]a\neq 0\vee b\neq 0[/mm]
> (Also ist nicht a und b gleichzeitig Null, sonst wäre ja
> der Grad nicht 2, oder 3)
>  
> eine Zerlegung
>  
> [mm](a'x^2+b'x+c')(x-d')=f(x)[/mm] mit [mm]a'\neq 0\vee b'\neq 0[/mm], mit d'
> ist Nullstelle von f.

[ok]
Vielleicht noch eine Begründung, warum jede Zerlegung von f einen
Linearfaktor enthält.

>  
> Das war die Hinrichtung. Nun zur Rückrichtung:
>  
> "f hat Nullstelle [mm]\Rightarrow[/mm] f ist reduzibel"
>  
> Da f eine Nullstelle hat und [mm]deg\,\, f\in\{2,3\}[/mm] hat f
> mindestens einen linear Faktor.

[ok]
Diese Richtung gilt auch unabhängig vom Grad von f, wenn $deg [mm] f\ge [/mm] 1$.

>  
>
>
> Passt das so? Die Rückrichtung ist ja ziemlich trivial.

Gruß
meili

Bezug
                
Bezug
Reduzibel, Nullstelle: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:22 Mo 09.06.2014
Autor: YuSul

Okay, vielen Dank.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]