www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Rechtsseitige Diff'barkeit
Rechtsseitige Diff'barkeit < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rechtsseitige Diff'barkeit: Korrektur/Tipp
Status: (Frage) beantwortet Status 
Datum: 20:01 So 01.01.2012
Autor: Lustique

Aufgabe
Es seien $a, [mm] b\in\mathbb{R}$ [/mm] mit $a<b$. Die Funktion [mm] $f\colon \left[a, b\right] \to \mathbb{R}$ [/mm] sei stetig und auf [mm] $\left(a, b\right)$ [/mm] differenzierbar und es existiere [mm] $\textstyle \lim_{x\downarrow a} [/mm] f'(x)=: [mm] \ell$. [/mm] Dann ist $f$ in $a$ rechtsseitig differenzierbar mit [mm] $f_{+}'(a)=\ell$. [/mm]
Hinweis: Betrachten Sie Folgen [mm] $(x_n)$ [/mm] in [mm] $\left(a, b\right)$ [/mm] mit [mm] $\lim_{n\to\infinity} x_n=a$ [/mm] und verwenden Sie den 1. Mittelwertsatz.



Hallo,

ich wollte euch mal fragen, ob meine Lösung so in Ordnung ist, oder, was wahrscheinlicher ist, ob ihr mir einen Tipp geben könnt, wie die Aufgabe richtig zu lösen ist, weil meine Lösung falsch ist. Meine Lösung bisher:

Es gilt [mm] $f_+'(a):=\lim_{x\downarrow a}\frac{f(x)-f(a)}{x-a}$. [/mm] (Also wenn $a$ nicht der rechte Randpunkt ist, oder so, glaube ich.)

Sei [mm] $(x_n)$ [/mm] eine beliebige Folge in [mm] $\left(a, b\right)$ [/mm] mit [mm] $x_n \to [/mm] a$ für [mm] $n\to\infty$. [/mm] Dann gilt: [mm] $\lim_{x\downarrow a}f'(x)=\lim_{n\to\infty}f'(x_n)=:\ell$. [/mm]

Nun gilt auch, da $f$ auf [mm] $\left(a, b\right)$ [/mm] differenzierbar ist, dass $f$ auch auf [mm] $\left[a, x_n\right]$ [/mm] stetig, und auf [mm] $\left(a, x_n\right)$ [/mm] differenzierbar ist. Nach dem ersten MWS gilt nun:

[mm] $\exists \xi\in\left(a, x_n\right): f_+'(\xi)=\frac{f(x_n)-f(a)}{x_n-a}$. [/mm] (Kann ich das so auf die rechtsseitige Ableitung übertragen?)

Für [mm] $n\to\infty$ [/mm] gilt nun:

[mm] $\lim_{n\to\infty}\left(f_+'(\xi)=\frac{f(x_n)-f(a)}{x_n-a}\right)=\lim_{x\downarrow a}\left(\frac{f(x)-f(a)}{x-a}\right)=f_+'(a)=\ell$. [/mm]

Da nun [mm] $\xi\in\left(a, x_n\right)$ [/mm] und [mm] $x_n\to [/mm] a$ für [mm] $n\to\infty$, [/mm] gilt [mm] $\lim_{n\to\infty}\xi=a$. [/mm]


Das ist jetzt zwar höchstwahrscheinlich formal eine Katastrophe (vor allem der letzte Satz), aber stimmt zumindest die Grundidee, bzw. kann man das Ganze noch retten?

        
Bezug
Rechtsseitige Diff'barkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 23:57 So 01.01.2012
Autor: Marcel

Hallo,

> Es seien [mm]a, b\in\mathbb{R}[/mm] mit [mm]a
> sei stetig und auf [mm]\left(a, b\right)[/mm] differenzierbar und es
> existiere [mm]\textstyle \lim_{x\downarrow a} f'(x)=: \ell[/mm].
> Dann ist [mm]f[/mm] in [mm]a[/mm] rechtsseitig differenzierbar mit
> [mm]f_{+}'(a)=\ell[/mm].
> Hinweis: Betrachten Sie Folgen [mm](x_n)[/mm] in [mm]\left(a, b\right)[/mm]
> mit [mm]\lim_{n\to\infinity} x_n=a[/mm] und verwenden Sie den 1.
> Mittelwertsatz.
>  
>
> Hallo,
>
> ich wollte euch mal fragen, ob meine Lösung so in Ordnung
> ist, oder, was wahrscheinlicher ist, ob ihr mir einen Tipp
> geben könnt, wie die Aufgabe richtig zu lösen ist, weil
> meine Lösung falsch ist. Meine Lösung bisher:
>
> Es gilt [mm]f_+'(a):=\lim_{x\downarrow a}\frac{f(x)-f(a)}{x-a}[/mm].
> (Also wenn [mm]a[/mm] nicht der rechte Randpunkt ist, oder so,
> glaube ich.)
>
> Sei [mm](x_n)[/mm] eine beliebige Folge in [mm]\left(a, b\right)[/mm] mit [mm]x_n \to a[/mm]
> für [mm]n\to\infty[/mm]. Dann gilt: [mm]\lim_{x\downarrow a}f'(x)=\lim_{n\to\infty}f'(x_n)=:\ell[/mm].
>
> Nun gilt auch, da [mm]f[/mm] auf [mm]\left(a, b\right)[/mm] differenzierbar
> ist, dass [mm]f[/mm] auch auf [mm]\left[a, x_n\right][/mm] stetig

die Stetigkeit an der Stelle [mm] $a\,$ [/mm] folgt so nicht, sondern sie war auch gegeben [mm] ($f\,$ [/mm] war stetig als Abbildung $[a,b] [mm] \to \IR\,,$ [/mm] dann ist [mm] $f\,$ [/mm] an der Stelle [mm] $a\,$ [/mm] insbesondere stetig (was hier das gleiche ist wie rechtsstetig an [mm] $a\,,$ [/mm] weil [mm] $f\,$ [/mm] "links von [mm] $a\,$ [/mm] nirgends definiert ist")). Also die Stetigkeit auf (jedem Intervall) [mm] $(a,x_n]$ [/mm] folgt so, wie Du es sagst (man beachte, dass [mm] $f\,$ [/mm] an jeder Stelle [mm] $x_n \in [/mm] (a,b)$ (rechts- und linksseitig) differenzierbar ist). Und weil die (rechtsseitige) Stetigkeit von [mm] $f\,$ [/mm] an [mm] $a\,$ [/mm] mitvorausgesetzt wurde, hast Du in der Tat die Stetigkeit auf [mm] $[a,x_n]\,.$ [/mm]

> , und auf
> [mm]\left(a, x_n\right)[/mm] differenzierbar ist. Nach dem ersten
> MWS gilt nun:
>
> [mm]\exists \xi\in\left(a, x_n\right): f_+'(\xi)=\frac{f(x_n)-f(a)}{x_n-a}[/mm].
> (Kann ich das so auf die rechtsseitige Ableitung
> übertragen?)

Ja und nein. So, wie Du es schreibst, meint man, dass es ein FESTES [mm] $\xi$ [/mm] für jedes [mm] $n\,$ [/mm] geben würde. In Wahrheit gibt es aber für jedes [mm] $n\,$ [/mm] ein [mm] $\xi=\xi_n\,.$ [/mm] Schreibe also lieber
[mm] $$\exists \xi_n \in (a,x_n):\ldots$$ [/mm]
  
Weiterhin weiß ich nicht, warum Du dann nur die rechtsseitige Ableitung an [mm] $\xi_n$ [/mm] hinschreibst. Schreib' doch direkt [mm] $f'(\xi_n)=\ldots$ [/mm]
(Beachte: Alle [mm] $\xi_n$ [/mm] liegen in [mm] $(a,b)\,,$ [/mm] und damit ist [mm] $f\,$ [/mm] an allen [mm] $\xi_n$ [/mm] nach Voraussetzung insbesondere diff'bar...)

> Für [mm]n\to\infty[/mm] gilt nun:
>
> [mm]\red{\lim_{n\to\infty}\left(f_+'(\xi)=\frac{f(x_n)-f(a)}{x_n-a}\right)}=\lim_{x\downarrow a}\left(\frac{f(x)-f(a)}{x-a}\right)=f_+'(a)=\ell[/mm].
>
> Da nun [mm]\xi\in\left(a, x_n\right)[/mm] und [mm]x_n\to a[/mm] für
> [mm]n\to\infty[/mm], gilt [mm]\lim_{n\to\infty}\xi=a[/mm].


> Das ist jetzt zwar höchstwahrscheinlich formal eine
> Katastrophe (vor allem der letzte Satz), aber stimmt
> zumindest die Grundidee, bzw. kann man das Ganze noch
> retten?  

Das ganze ist doch so ziemlich korrekt. Unsauber ist das rotmarkierte: Man schreibt normalerweise nicht einen Limes vor eine Gleichung, wenn der sich auf jede Seite der Gleichung beziehen sollte, sondern halt, weil es so logisch und definiert ist, vor den entsprechenden Term/die entsprechende Folge ... Siehe unten den blaumarkierten Teil...

Also, ohne das von Dir bisher geschrieben nochmal zu wiederholen, nur das wichtige nochmal sauber(er) hingeschrieben:
[mm] $$(\star)\;\;\;\forall [/mm] n [mm] \exists \xi_n \text{ mit }f'(\xi_n)=(f(x_n)-f(a))/(x_n-a)$$ [/mm]
nach dem MWS angewendet auf die Einschränkung [mm] $f_{|[a,x_n]}\,.$ [/mm]

Nach Voraussetzung folgt insbesondere
[mm] $$\ell=\lim_{n \to \infty}f'(\xi_n)\,,$$ [/mm]
wobei man $a < [mm] \xi_n [/mm] < [mm] x_n \to [/mm] a$ beachten sollte. (Das begründet nämlich, warum [mm] $\xi_n \to [/mm] a$ gilt.)

Weil [mm] $(x_n)_n$ [/mm] eine beliebige Folge in $(a,b)$ war mit [mm] $x_n \to a\,,$ [/mm] folgt aus [mm] $(\star)$ [/mm] somit
[mm] $$f'_{+}(a)=\blue{\lim_{n \to \infty} \frac{f(x_n)-f(a)}{x_n-a}=\lim_{n \to \infty}f'(\xi_n)}=\ell\,.$$ [/mm]

Also:
Die einzigen Sachen, die bei Dir "logisch unsauber" waren, waren, dass Du die [mm] $\xi_n$ [/mm] als "ein [mm] $\xi$ [/mm] notiert" hattest - wobei ich mir sicher bin, dass Du sie eh als von [mm] $n\,-$ [/mm] (oder meinetwegen auch von [mm] $x_n-$) [/mm] abhängig aufgefasst hast. Jedenfalls entnehme ich das der Zeile, wo Du schreibst

> [mm] $$\lim_{n\to\infty}f_+'(\xi)\,,$$ [/mm]

denn warum steht sonst unter dem Limes ein $n [mm] \to \infty$? [/mm] Ich gehe also davon aus: Du hast's gewußt,  hast da aber formal ein wenig geschlampt ;-)

Und nach wie vor Frage ich mich, warum Du da nur (in ergänzter Fassung) [mm] $f'_+(\xi_n)$ [/mm] hinschreibst. Aber das sollte damit auch genauso gehen. Im Endeffekt würde ich sagen: Das sieht doch ziemlich gut aus!

Zusammenfassend: Was man höchstens bemängeln könnte:
Das [mm] $n\,$ [/mm] bei [mm] $\xi$ [/mm] ist zu ergänzen (also, wie oben bei mir geschehen, [mm] $\xi_n$ [/mm] schreiben) und erwähne zusätzlich die (rechtsseitige) Stetigkeit von [mm] $f\,$ [/mm] an der Stelle [mm] $a\,.$ [/mm] Und dann halt der rotmarkierte Teil. Mehr sehe ich auf die Schnelle jedenfalls nicht!

Gruß,
Marcel

Bezug
                
Bezug
Rechtsseitige Diff'barkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:57 So 08.01.2012
Autor: Lustique

Danke für deine Hilfe!

Ja, das mit den [mm] $\xi_n$ [/mm] hätte ich eigentlich wissen müssen. Ich bin ja sogar tatsächlich von verschiedenen [mm] $\xi$ [/mm] ausgegangen...

> Weiterhin weiß ich nicht, warum Du dann nur die
> rechtsseitige Ableitung an [mm]\xi_n[/mm] hinschreibst. Schreib'
> doch direkt [mm]f'(\xi_n)=\ldots[/mm]
>  (Beachte: Alle [mm]\xi_n[/mm] liegen in [mm](a,b)\,,[/mm] und damit ist [mm]f\,[/mm]
> an allen [mm]\xi_n[/mm] nach Voraussetzung insbesondere
> diff'bar...)

Das weiß ich ehrlich gesagt auch nicht mehr so genau. Ich glaube, ich habe gedacht, das wäre "sicherer", weil ja [mm] $\xi_n\to [/mm] a$ gelten sollte und $f$ ja in $a$ nur rechtsseitig diff'bar ist. Aber das ändert natürlich nichts daran, dass $f$ ja gerade in $(a,b)$ diff'bar ist und ja [mm] $\xi_n\in(a,b)$ [/mm] gelten sollte...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]