Rechnen mit Verteilungen < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:18 Mo 08.09.2008 | Autor: | LL0rd |
Aufgabe | a) X [mm] \sim [/mm] N(8,9) und Y [mm] \sim [/mm] N(-3,16). X und Y sind stochastisch unabhängig
Z = X + Y
U = X - Y
b) X ist eine normalverteile Zufallsvariable mit Erwartungswert 0 und der Varianz 16. > ist eine Normalverteilte Zufallsvariable mit Erwartungswert 4 und Varianz 1. X und Y sind stochastisch unabhängig
Z = X/2 +1
W = 5 - Y |
Hallo,
ich rechne gerade folgende Aufgaben und verstehe leider die Musterlösung nicht. Ich weiß leider nicht, wie man auf die Ergebnisse kommt. Okay, bei der a) und Z ist es trivial.
Z = (8-3,9+16)
aber bei U fängt das Problem schon an. Ich hätte jetzt gesagt:
U = (8+3,9-16), Musterlösung sagt jedoch U = (8+3,9+16). Wieso das so ist, verstehe ich nicht. Okay, die Varianz ist da irgendwie mit einem Quadrat drin. Aber wie rechne ich damit?
Genau das gleiche Problem habe ich auch bei b). Nach welchen Rechenregeln rechne ich das? Bzw. wie bekomme ich eine Lösung?
|
|
|
|
> a) X [mm]\sim[/mm] N(8,9) und Y [mm]\sim[/mm] N(-3,16). X und Y sind
> stochastisch unabhängig
>
> Z = X + Y
> U = X - Y
>
> b) X ist eine normalverteile Zufallsvariable mit
> Erwartungswert 0 und der Varianz 16. > ist eine
> Normalverteilte Zufallsvariable mit Erwartungswert 4 und
> Varianz 1. X und Y sind stochastisch unabhängig
>
> Z = X/2 +1
> W = 5 - Y
> Hallo,
>
> ich rechne gerade folgende Aufgaben und verstehe leider die
> Musterlösung nicht. Ich weiß leider nicht, wie man auf die
> Ergebnisse kommt. Okay, bei der a) und Z ist es trivial.
>
> Z = (8-3,9+16)
> aber bei U fängt das Problem schon an. Ich hätte jetzt
> gesagt:
> U = (8+3,9-16), Musterlösung sagt jedoch U = (8+3,9+16).
> Wieso das so ist, verstehe ich nicht. Okay, die Varianz ist
> da irgendwie mit einem Quadrat drin. Aber wie rechne ich
> damit?
>
> Genau das gleiche Problem habe ich auch bei b). Nach
> welchen Rechenregeln rechne ich das?
Für den Erwartungswert hast Du [mm] $\mathrm{E}(aX+b)=a\mathrm{E}(X)+b$, [/mm] aber auch [mm] $\mathrm{E}(X+Y)=\mathrm{E}(X)+\mathrm{E}(Y)$.
[/mm]
Daher ist also z.B. bei a) der Erwartungswert von $U$ gleich
[mm] [center]$\mathrm{E}(U)=\mathrm{E}(X-Y)=\mathrm{E}(X+(-Y))=\mathrm{E}(X)+\mathrm{E}(-Y)=\mathrm{E}(X)+\mathrm{E}((-1)\cdot Y)=\mathrm{E}(X)+(-1)\cdot \mathrm{E}(Y)=8+(-1)\cdot(-3)=8+3=11$[/center]
[/mm]
Für die Varianz gilt jedoch [mm] $\mathrm{var}(aX+b)=a^2\mathrm{var}(X)$ [/mm] und, falls $X$ und $Y$ unkorreliert (also z.B. unabhängig) sind, auch [mm] $\mathrm{var}(X+Y)=\mathrm{var}(X)+\mathrm{var}(Y)$.
[/mm]
Daher ist bei a) die Varianz von $U$ gleich
[mm] [center]$\mathrm{var}(U)=\mathrm{var}(X-Y)=\mathrm{var}(X+(-Y))=\mathrm{var}(X)+\mathrm{var}(-Y)=\mathrm{var}(X)+\mathrm{var}((-1)\cdot Y)=\mathrm{var}(X)+(-1)^2\cdot \mathrm{var}(Y)=9+16=25$.[/center]
[/mm]
Bem: Ich habe diese Umformungen absichtlich in so kleinen Schritten ausgeführt, um nur gerade die besagten Rechenregeln (und nicht etwa aus ihnen abgeleitete verkürzte Schlussweisen) verwenden zu müssen.
|
|
|
|