www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Rechenregeln Mengen
Rechenregeln Mengen < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rechenregeln Mengen: Idee
Status: (Frage) beantwortet Status 
Datum: 15:23 Mo 29.10.2012
Autor: heinze

Aufgabe
a) Beweise mit Wahrheitswertetabelle [mm] A\wedge (A\vee [/mm] B)=A

b)A,B seien Teilmengen der Grundmenge X und [mm] M^c:=X\M [/mm] das Komplement der Teilmenge [mm] M\subset [/mm] X in X.

Zeige mit Hilfe von Teil a), dass [mm] A\cap (A\cup [/mm] B)=A

a) ist logisch

Nur verstehe ich nicht wie ich b) mit a) beweisen soll. Ich hätte es bewiesen nach der Art: [mm] x\in [/mm] A .....

soll ich einfach annehmen, dass [mm] \cup [/mm] entspricht [mm] \vee [/mm] ?

Oder wie beweise ich das mit a)?


LG
heinze

        
Bezug
Rechenregeln Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:39 Mo 29.10.2012
Autor: schachuzipus

Hallo heinze,


> a) Beweise mit Wahrheitswertetabelle [mm]A\wedge (A\vee[/mm] B)=A

Hier sollen [mm]A,B[/mm] Aussagen sein!

Das ist etwas "unglücklich", da in b) [mm]A,B[/mm] für Mengen stehen ...

Aber naja

>  
> b)A,B seien Teilmengen der Grundmenge X und [mm]M^c:=X\M[/mm] das
> Komplement der Teilmenge [mm]M\subset[/mm] X in X.
>  
> Zeige mit Hilfe von Teil a), dass [mm]A\cap (A\cup[/mm] B)=A
>  a) ist logisch
>  
> Nur verstehe ich nicht wie ich b) mit a) beweisen soll. Ich
> hätte es bewiesen nach der Art: [mm]x\in[/mm] A .....
>  
> soll ich einfach annehmen, dass [mm]\cup[/mm] entspricht [mm]\vee[/mm] ?

Jo, du musst die Mengengleichheit auf eine Aussage zurückführen:

[mm]A\cap(A\cup B)=A \ \gdw \ \forall x\in X:(x\in A\cap(A\cup B) \ \gdw \ x\in A)[/mm]

Und letzteres hast du in a) mit einer WWT gezeigt, wobei die Aussage [mm]A[/mm] aus a) hier der Aussage [mm]x\in A\cap(A\cup B)[/mm] entspricht und die Aussage [mm]B[/mm] aus a) hier [mm]x\in A[/mm] ist.


>
> Oder wie beweise ich das mit a)?
>  
>
> LG
>  heinze

Gruß

schachuzipus


Bezug
        
Bezug
Rechenregeln Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:20 Mo 29.10.2012
Autor: tobit09

Hallo heinze,

nennen wir die Aussagen in a) mal lieber A' und B' statt A und B.

Sei in der Situation von b) [mm] $x\in [/mm] X$. Dann bezeichne A' die Aussage [mm] $x\in [/mm] A$ und B' die Aussage [mm] $x\in [/mm] B$. Es gelten folgende Äquivalenzen:

[mm] $x\in A\cap(A\cup [/mm] B)$
[mm] $\gdw x\in A\wedge x\in(A\cup [/mm] B)$     (Definition [mm] $\cap$) [/mm]
[mm] $\gdw x\in A\wedge (x\in A\vee x\in [/mm] B)$  (Definition [mm] $\cup$) [/mm]
[mm] $\gdw A'\wedge (A'\vee [/mm] B')$         (Definitionen $A'$ und $B'$)
[mm] $\gdw [/mm] A'$                 (Teil a) )
[mm] $\gdw x\in [/mm] A$              (Definition $A'$).

Somit gilt tatsächlich [mm] $A\cap(A\cup [/mm] B)=A$.


Viele Grüße
Tobias

Bezug
                
Bezug
Rechenregeln Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:16 Mi 31.10.2012
Autor: heinze

Danke, so habe ich mir das auch gedacht, allerdings wäre das auch logisch gewesen ohne den Verweis auf Teil a)


LG
heinze

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]