www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Real- und Imaginärteil
Real- und Imaginärteil < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Real- und Imaginärteil: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:49 So 06.05.2012
Autor: MaxPlanck

Aufgabe
Finden Sie Real- und Imaginärteil von [mm] $\frac{z+1}{2z-5}$, [/mm] wo $z=a+ib$.

Ist die Rechnung wirklich so mühsam wie ich denke? Ich habe mal drauf los gerechnet und musste feststellen, dass sie eigentlich recht langwierig ist.
Gibt es einen 'Trick' oder etwas ähnliches, wie das einfacher geht?

        
Bezug
Real- und Imaginärteil: Antwort
Status: (Antwort) fertig Status 
Datum: 10:54 So 06.05.2012
Autor: fred97


> Finden Sie Real- und Imaginärteil von [mm]\frac{z+1}{2z-5}[/mm], wo
> [mm]z=a+ib[/mm].
>  Ist die Rechnung wirklich so mühsam wie ich denke?


Lass uns an Deinen Gedanken teilhaben !

> Ich
> habe mal drauf los gerechnet und musste feststellen, dass
> sie eigentlich recht langwierig ist.


Das ist schon der Fall.


> Gibt es einen 'Trick' oder etwas ähnliches, wie das
> einfacher geht?

Zeig Deine Rechnungen !

FRED


Bezug
                
Bezug
Real- und Imaginärteil: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:11 So 06.05.2012
Autor: MaxPlanck

Ich habe zuerst mit der konjugiert komplexen Zahl multipliziert, d.h.
[mm] \[\frac{|z|^{2}+\bar{z}}{2|z|^{2}-5\bar{z}}\] [/mm]
[mm] \[\frac{(|z|^{2}+\bar{z})(2|z|^{2}-5\bar{z})}{(2|z|^{2}-5\bar{z})(2|z|^{2}-5\bar{z})}\] [/mm]
Und dann folgen einige Rechenschritte, die aber letzten Endes keine Erleuchtung gebracht haben. Mathematica hat dann einen elends langen Term für den Realteil ausgespuckt.

Bezug
                        
Bezug
Real- und Imaginärteil: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 So 06.05.2012
Autor: fred97


> Ich habe zuerst mit der konjugiert komplexen Zahl
> multipliziert, d.h.
>  [mm]\[\frac{|z|^{2}+\bar{z}}{2|z|^{2}-5\bar{z}}\][/mm]


Du hast also mit  [mm] \bar{z} [/mm] erweitert ? Das bringt nichts.


Erweitere den ursprünglichen Bruch mit $2 [mm] \bar{z}-5$. [/mm] Dann wird der Nenner reell.

FRED

>  
> [mm]\[\frac{(|z|^{2}+\bar{z})(2|z|^{2}-5\bar{z})}{(2|z|^{2}-5\bar{z})(2|z|^{2}-5\bar{z})}\][/mm]
>  Und dann folgen einige Rechenschritte, die aber letzten
> Endes keine Erleuchtung gebracht haben. Mathematica hat
> dann einen elends langen Term für den Realteil
> ausgespuckt.  


Bezug
                                
Bezug
Real- und Imaginärteil: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:31 So 06.05.2012
Autor: MaxPlanck

Dankeschön, das ist zielführend.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]