www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Rayleigh-Quotient, Eigenwert
Rayleigh-Quotient, Eigenwert < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rayleigh-Quotient, Eigenwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:33 So 14.08.2011
Autor: qsxqsx

Hallo,

Mittels eines iterativen Verfahrens versucht man Eigenwerte zu finden. Dabei wird in der Regel der Betragsmässig grösste Eigenwert gefunden, da dieser die Abbildung am meisten "verzerrt".

Das Verfahren funktioniert so, dass man einen (fast) beliebigen Startvektor [mm] x_{0} [/mm] nimmt, und wie folgt vorgeht:

[mm] x_{k+1} [/mm] = [mm] A*x_{k} [/mm]
[mm] x_{k+1} [/mm] = [mm] \bruch{x_{k+1}}{||x_{k+1}||} [/mm]

[mm] \lambda_{k+1} [/mm] = [mm] \bruch{} [/mm]
,denn falls [mm] x_{k} [/mm] sich dem Eigenveltor nähert, gitl A*x = [mm] \lambda*x. [/mm]

1.Nun is die Frage, wie man den Betragsmässig kleinsten Eigenwert finden kann. Ich sage dazu, dass man die iteration für [mm] A^{-1} [/mm] machen kann. Oder noch eleganter wäre inverse Vektoriteration.
2.Wie findet man den Eigenwert, der am nächsten bei 1/3 liegt?
Hier fällt mit nichts ein. In der Lösung steht nur "inverse Vektoriteration mittels Verschiebung". Ich weiss aber nicht wie das umzusetzen wäre. Kann mir hier jemand helfen?

Danke.

Grüsse

        
Bezug
Rayleigh-Quotient, Eigenwert: Antwort
Status: (Antwort) fertig Status 
Datum: 15:11 So 14.08.2011
Autor: ullim

Hi,

schaumal hier, da gibt es eine meiner Meinung nach gute Erklärung für Dein Problem

[]Inverse Vektoriteration mit Verschiebung Kapitel 2

Bezug
                
Bezug
Rayleigh-Quotient, Eigenwert: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:10 So 14.08.2011
Autor: qsxqsx

Hallo,

Perfekt, danke!

Doch da is mir noch was selbst eingefallen, wollte fragen was ihr von der Idee haltet. Um den Betragsmässig kleinsten Eigenwert zu erhalten geh ich einfach rückwärts, sodass der Rayleigh Koeffizient so aussen würde:

R = [mm] \bruch{}{}, [/mm] weil wenn [mm] x_{k} [/mm] sich dem Eigenvektor nähert gibt das ja quasi [mm] \bruch{1}{\lambda}. [/mm] Man müsste bei einem grossen k beginnen und dann das k immer weiter verkleinern. Macht das Sinn? Ich bin eben nicht sicher ob ich dann den Betragsmässig kleinsten Eigenwert oder doch nur einfach den Kehrwert des grössten Eigenwerts finden werde?

Danke.

Grüsse




Bezug
                        
Bezug
Rayleigh-Quotient, Eigenwert: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Di 16.08.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]